
Naval Research Laboratory
Washington, DC 20375-5000

NRL Report 9154

Automated Text Highlighting of Navy
Equipment Failure Messages

K. WAUCHOPE AND E. MARSH

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

AND

M. K. DIBENIGNO

JAYCOR

November 2, 1988

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE Form ApprovedIOMB No 0704.0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 9154

Ea NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1 I plicable)
Naval Research Laboratory Code 5510 Naval Research Laboratory

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS(City, State, and ZIP Code)

Washington, DC 20375-5000 Washington, DC 20375-5000

8a. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Office of Naval Research

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO NO NO CCESSION NO

61153N 5501-80 rDN155-294
11. TITLE (Include Security Classification)

Automated Text Highlighting of Navy Equipment Failure Messages

12. PERSONAL AUTHOR(S)

Wauchope, K., DiBenigno, M.K.,* and Marsh, E.
13a. TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year,Month,Day) 1S PAGE COUNT

I FROM TO | 1988 November 2 46
16. SUPPLEMENTARY NOTATION

*JAYCOR, Vienna, VA

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Natural language understanding Navy Messages

Knowledge based systems

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes Text Reduction System (TERSE) that is a knowledge-based system for highlighting important
information in the narrative portion of Navy equipment failure messages-Casualty Reports (CASREPs). The system
contains two knowledge bases for message evaluation, one that is equipment-specific and the other equipment-general.
The equipment-specific knowledge base contains a structural model of a piece of equipment discussed in one class of
CASREPs (a shipboard air compressor), encoded as a network of slot/filler units. Since message writers use a wide
variety of descriptive naming conventions in referring to pieces of equipment, it is not possible to provide a complete list
of synonyms for each part. Instead, the system must use the equipment model to actively dereference each complex
nominal, by finding an equipment unit whose attributes match a structural host-modifier analysis of the noun phrase.
When an equipment name is underspecified, a disambiguation algorithm uses the equipment model to select the most
likely referent from the ambiguity set of matching units. The system also contains general causal inferencing heuristics
that use the equipment model network to infer causal relationships that are believed to be implicit in the message. The

(Continues)
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E UNCLASSIFIED/UNLIMITED El SAME AS RPT Em DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Kenneth Wauchope (202)767-9004 Code 5510

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

i

SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT (Continued)

equipment-general portion of the system performs semantic normalization, infers and tags key categories of information,
and finally ranks the message clauses by applying user evaluation criteria represented as numeric scores assigned to vari-
ous patterns of information types. The system is implemented in the KEE expert system shell and runs on a Symbolics
machine and Sun workstation.

DD Form 1473, JUN 86 (Reverse) SECURITY CLASSIFICATION OF THIS PAGE

ii

CONTENTS

INTRODUCTION ... 1

TEXT ANALYSIS AND REPRESENTATION 2

SYSTEM ARCHITECTURE 5

THE TERSE-RULES RULE BASE ... 8

THE EQUIPMENT MODEL 1

Nominal Dereferencing .. 13

M atching ... 15
Contextual Disambiguation ... 18

The MODEL Rule Base .. 20
M odel-Based Inferencing ... 22

SAMPLE RUN ... 24

IMPLEMENTATION ... 33

CONCLUDING REMARKS 34

Nominal Dereferencing Limitations ... 34

Head Nouns ... 35
Left M odifiers 35

Text Representation Limitations ... 36

RECOMMENDATIONS 38

Transitioning to Fleet 38
Moving to New Message Domains ... 38
Reevaluating the Task 39

ACKNOWLEDGMENTS 40

REFERENCES ... 40

iii

AUTOMATED TEXT HIGHLIGHTING OF
NAVY EQUIPMENT FAILURE MESSAGES

INTRODUCTION

In this report we describe a prototype system used to highlight important information in narra-
tive texts, specifically in messages reporting failures of shipboard equipment, Casualty Reports
(CASREPs). This system, Text Reduction System (TERSE), is implemented in the KEE* expert sys-
tem shell. The input to the system is a semantic representation of the message content that derives
from a separate linguistic component. The system uses two knowledge sources to extract from the
message content the clause(s) most relevant to some end-user application, such as equipment failure
trend analysis. The knowledge sources are an equipment model, representing the equipment-specific
knowledge of the system, and a set of more general rules, most of which are derived from our pilot
SUMMARY system [1,2].

We wrote the SUMMARY system as a production rule system in the OPS5 programming
language [3]. The goal of the system was to extract the same information from CASREPs as did a
team of NAVSEA contractors who had the task of generating a short textual extract of each message
to be used in failure trend analysis. Since the manual extracts rarely contained text that was not
present in the original narrative, but usually restated a clause that was already in the message, we
took the same approach. We modeled text-extraction knowledge in our system as a saliency rating of
certain types of information deemed important to include in the extract, such as causality, results of
investigation, and malfunction. The system also contained rules to infer the presence of certain
classes of information when not explicitly stated in the message. Numeric scores associated with each
type of information represented saliency ratings. The presence of any of these types of information in
a message clause would add to the clause's overall score, and finally the highest scoring clause(s)
would be chosen as the message extract.

Although SUMMARY's output compared favorably with the manual extracts, it lacked domain-
specific expertise. For example, in the message illustrated in Fig. 1, the SUMMARY system chose
Splines were extensively worn as the extract, in part because that assertion mentions the word worn
that the system could recognize unambiguously as denoting a bad state. The manual extract contained
this assertion, but also included the assertion Drive shaft was found to rotate freely at the SSDG end.
SUMMARY could not recognize "rotate freely" as connoting an abnormality, therefore it did not
endow that assertion with as high a ranking as the other. Indeed, human subjects presented with this
sentence out of message context could not agree whether it connoted a positive or negative condition,
because the word freely could connote either one. Apparently the writers of the manual extract were
making use of deeper sorts of knowledge, such as domain-specific expertise and discourse tracking, to
infer the negative status of the shaft from the message context.

Manuscript approved July 13, 1988.
*KEE is a product of Intellicorp, Mountain View, California.

1

WAUCHOPE, MARSH, AND DIBENIGNO

Fig. I - Message I

Although SUMMARY' s performance seemed reasonably good, we wanted to investigate
whether providing additional, deeper knowledge would create a worthwhile improvement in perfor-
mance. This report describes the current development version of the system, which contains much
more domain-specific knowledge about a particular equipment world (a shipboard air compressor)
than did SUMMARY, allowing it to form a deeper understanding of the air compressor equipment
failure messages than before. Otherwise the basic concept behind the original rule system has
changed little.

The updated TERSE system is implemented in the KEE expert system shell. OPS5 is funda-
mentally a production rule system with only primitive means for representing structured objects.
KEE provided a true frame-based object representation scheme that was ideal for building a highly
structured equipment model. In KEE the object-oriented representation is fully integrated with the
production rule facility and with an English-like assertion/query language, which allows us to keep
the rule-based approach used in SUMMARY while making the rules more readable. Finally, KEE
provided a powerful graphics interface that greatly improved product development and demonstration.

The organization of this report is as follows. First we briefly describe natural language pro-
cedures and the resulting text representation that is used as input to the TERSE system. These are
more fully described in Ref. 2. We then provide an overview of the TERSE system architecture and
a discussion of its control routine and database element definitions. Next we describe the knowledge
bases used in the TERSE system-the TERSE-RULES knowledge base and the equipment model and
its associated rules. This is followed by a full example of system execution of a sample message.
Then we evaluate the current TERSE system implementation, and finally we conclude the report with
discussions of what will be necessary for the transition of TERSE for use in the Fleet and for future
research issues.

TEXT ANALYSIS AND REPRESENTATION

The primary task of the natural language processing procedures used for text analysis is to
derive a canonical representation of the information found in the narrative portions of a message. In
the earlier version of this system and in TERSE, we have used an approach called information format-
ting. This approach was developed and implemented by Sager et al. at New York University in the
Linguistic String Project (LSP) system for natural language analysis [4]. Originally developed for
patient records and for journal articles within a medical domain, the system performs natural language
analysis on a text and derives information formats; we have adapted this system to the Navy equip-
ment failure domain [5]. The natural language analysis procedure involves four stages of processing:
parsing, syntactic decomposition, regularization, and mapping into the information format structure
(Fig. 2).

We can think of an information format as being a record structure, with one slot for each type
of information that can occur in a class of texts. Because texts in a restricted domain discuss a lim-
ited set of objects, descriptions, and actions, semantic classes for these basic types of information can

2

SA4C received high usage during two BECCE periods.
CCS received a report that LO pressure was dropping.
Alarmn sounded.
Loud noises were coning from the drive end during coast down.
Drive shaft wvas found to rotate freely at the SSDG end.
Splines were extensively worn.

NRL REPORT 9154

Message

Natural

Language

Analysis

I
Information

Format

Structure

Fig. 2 - Natural language analysis procedures

3

PARSE

DECOMPOSE

REGULARIZE

FORMAT

WAUCHOPE, MARSH, AND DIBENIGNO

be derived through techniques of distributional analysis [6]. Distributional analysis generates these
classes by looking at co-occurrence properties of words in their syntactic context. We assume that
words with similar co-occurrence patterns have similar informational standing in the domain, there-
fore they are placed in the same class. For example, objects in CASREPs about starting air compres-
sors include, among others, names of pieces of equipment and their component parts, and organiza-
tions that operate and maintain the equipment. Descriptions of objects include function, status, and
tasks. Actions on objects include such things as repair actions, diagnosis actions, and reporting
actions. Figure 3 illustrates several of the semantic categories that were derived by distributional
analysis of the CASREP message domain, along with the mnemonic name we have given each
category.

ADMIN action or request for part:
forward, report, expedite

FUNC function performed by equipment:
broadcast, communication, operate

INVEST investigative act:
check, isolate, troubleshooting

ORG personnel or organization:
AMOTU, ship, technical, originator, technician

PART equipment, subsystem, or part:
antenna, AN/'URC-9, controller

PROCURE action to request, ship, receive, or hold part:
deliver, purchase, reorder

PROP property of part:
allowance, clearance, sync, weight

REPAIR repair action:
repair, adjust, overhaul

STASK ship's task:
arrival, assignment, transit

STATUS equipment status:
casualty, fanlt, malfunction, good

Fig. 3 - Some CASREP semantic categories

Semantic class generally holds constant across syntactic categories; words that are morphologi-
cally related by either derivational or inflectional suffixes usually have similar distributions and are
therefore categorized similarly. For example, investigate and investigation are both INVEST words,
and both can occur in similar environments: MOTU 12 investigated problem with SAC and MOTU
12's investigation of problem with SAC. Usually a semantic class defines a word uniquely; thus SAC
(starting air compressor) is always a PART word within this domain. However, this may not always
be the case, since the meanings of some words change with the context. For example, we see in Fig.
4 that the word receive occurs in several different environments, but each occurrence has a different

4

NRL REPORT 9154

1. Second generation SAC received onboard for installation. PROCURE

2. Antenna was one of 2 primary IF receive antennas. PROCESS
3. Received low lube oil pressure alarm on number 2 SAC. EVID

Fig. 4 - Word meaning in different contexts

meaning. In the first sentence, receive indicates a procurement action; in the second sentence, an
electrical process; and in the third, the receipt of information by personnel. Each of these meanings
is represented by a different semantic class.

Each information format represents a simple assertion or clause in the message. Each word or
phrase in the assertion is entered into the appropriate semantic category slot of the format. Also, for-
mats contain slots for tense information and time expressions. Each slot also has subslots to hold
modifier information, such as negation and modality.

A second type of record, called a connective, connects other formats together. It has one slot
representing the connective category and two additional slots to hold the formats being connected.
Connectives include both explicit syntactic connectives, such as conjunction markers (i.e. and, or, and
","), and implicit markers, such as different types of complement (infinitival or assertional) and rela-
tive clause markers. They also include causal and time-relations that may hold among assertions.

Figure 5 illustrates the information format structure (in list notation, as the language analysis
component generates) of the sentence Drive shaft was found to rotate freely at the SSDG end, from
the message in Fig. 1. The process used to generate this format from raw text is as follows. First,
the parsing procedure determines the sentence structure, identifies phrase and clause boundaries and
host-modifier relationships, and identifies the scope of conjunctions. In our example sentence, drive
shaft is identified as the surface SUBJECT noun phrase of the sentence, was found as the VERB, to
rotate freely as the OBJECT, and freely is also identified as modifying rotate. During syntactic
decomposition, variety in sentence structure is reduced by syntactic transformation to simplify map-
ping into the information formats. Various types of clause, e.g., passives, restrictive relative clauses,
infinitival clauses, and sentence fragments, are transformed into simple active assertions, and missing
information in reduced clauses is recovered if it is available within the sentence. Also, morphological
variants of a word are reduced to a single base form, and most conjoined structures are expanded into
conjunctions of complete assertions. Thus, the parse tree for our example sentence is transformed
into a tree with the terminal elements SUBJ find PAST [that] drive shaft rotate freely at SSDG end,
where SUBJ is an empty node since we cannot, at this point, determine who the deep subject of the
sentence is, and the OBJECT of the sentence becomes the assertion drive shaft rotate freely at the
SSDG end. The regularization procedure strips off connectives and places them in front of their argu-
ments; here find is identified as a connective of the RELATION type. Its first argument is empty
since the deep SUBJECT of the sentence has not been identified, and the second represents the asser-
tion drive shaft rotate freely at the SSDG end.* Finally, the arguments of the connectives are mapped
into separate formats, and their words are mapped into appropriate slots of the information format
structure. In this example, drive shaft maps into the PART slot, rotate into the FUNC slot, and
freely into the STATUS slot of the format.

SYSTEM ARCHITECTURE

After the natural language analysis phase has converted a message into information format struc-
tures, these structures are passed to the TERSE system. TERSE is composed of four KEE

*Treating find as a connective, however, means that the zeroed subject is represented as a format structure. Since each format represents a
sentence or clause, this means that TERSE must incorrectly interpret the subject as an empty assertion. This inconsistency in the
representational scheme is discussed further in the section on "Text Representation Limitations."

5

WAUCHOPE, MARSH, AND DIBENIGNO

Fig. 5 - Information format for
Drive shaft was found to rotate freely at the SSDG end

"knowledge bases," or code modules: TERSE-RULES, MODEL, SYSTEM, and ICONS. The
overall system architecture is shown in Fig. 6(a). TERSE-RULES and MODEL are true knowledge
bases that contain the rules and equipment description used by the system in evaluating messages.
TERSE-RULES is the original SUMMARY system rulebase with some modifications and augmenta-
tions. It is discussed in more detail in the next section of this report. It represents the more domain-
independent portion of the system's knowledge. MODEL incorporates specific knowledge about the
particular equipment domain in question. It contains the frame-based representation of the starting air
compressor equipment, code for equipment nominal dereferencing, and an additional set of production
rules for doing model-based inferencing. The section of this report entitled "THE EQUIPMENT
MODEL" discusses the MODEL knowledge base in more detail. SYSTEM contains the code and
unit definitions used to translate the input to the system (information formats) into internal database
elements, and also contains the control information for running the system. Once installed in the
SYSTEM module, the database elements representing the input message can be accessed freely by
rules and LISP methods contained in the same or other knowledge bases. ICONS (not shown) con-
tains the definitions of the windows and icons that comprise the user interface to the system.

The system data/control flow is shown in Fig. 6(b). The rules in TERSE-RULES and MODEL
are organized into hierarchical rule sets. Both knowledge base and rule set activation are sequenced
deterministically by the external control routine contained in the SYSTEM module. After the SYS-
TEM knowledge base has converted the information format input data into database elements, it
passes processing to the MODEL knowledge base. The nominal dereferencing subcomponent of
MODEL begins by identifying all references to pieces of equipment in the message. Processing then
proceeds to the TERSE-RULES knowledge base where equipment-general word classification takes
place. Control then returns to MODEL to perform domain-based causal and state inferencing.
Finally, processing is passed back to TERSE-RULES to sequence through the remaining rule sets.

Rules within each rule class are allowed to fire opportunistically. Since we want to extract from
the message all instances of the types of information that are used in evaluating a message, we use a
forward-chaining (exhaustive) control strategy for rule firing, as opposed to a backward-chaining (suf-
ficiency or goal-directed) strategy. Although the system was intended to be capable of deriving text
highlightings tailored for different user goals, a goal-directed approach is not being used. This is
because the fundamental classes of information that are conveyed by CASREPs remain constant, and
we would accomplish user-tailoring by applying new sets of evaluation criteria to the same set of
basic information classes.

Information formats are represented internally as sets of units (frames). The largest unit of data
is the unit that represents an entire message. The system processes one message at a time. A mes-
sage unit contains a slot that is filled by a list of units called metaformats. A metaformat unit can
either be a conn unit or a format unit.

6

(CONN (OP (RELATION (HEAD FIND) (TEXT FIND)))
(ARC 1 (FMT))
(ARG2
(FMT (TEXT DRIVE SHAFT ROTATE FREELY AT TH IE SSDG END)

(PART (I IEAD SHAFT) (TEXT DRIVE SHAFT))
(STATUS (HEAD FREELY)(TEXT FREELY))
(FUNC (HEAD ROTATE) (TEXT ROTATE)))))

NRL REPORT 9154

Fig. 6(a) - TERSE architecture

MODEL Knowledge Basc

_ i).'tf! '.!,-
[I'.i -fi- - t.1;.-(:1- 1 ~ c~

_ hw1::s~~~~~~t; Il:!~~~ii.. '

A ;: !.. ... ; 1 "'t'!

_. ' I

TERSERULES Knowledge Base
C;~ ~ ~ ~~~ trariSforrn|E

I * (>.:a'sqnr-1- _

I Neoated Good Sajus+

I Ge'leral Infererc aQ_,,

I Score II

Fig. 6(b) - TERSE data flow

7

SYSTEM KnowledgJe Base

Database ONRLElementNTO
Definitions I~CEDUJRf#

Starting Air
Compressor Domain Specific

Model Ruies

TERSERULES Knowlede Baiss

Application specific
but domain independent

Rules

r

For atu

_ _

___!

WAUCHOPE, MARSH, AND DIBENIGNO

The conn unit has three slots that contain pointers to other units. These three slots are op,
argi, and arg2. The op slot contains a pointer to a unit that contains the connective word. The argi
and arg2 contain pointers to other metaformat units that are the arguments to the connective.

The format unit contains a slot for each semantic category in the sublanguage. When a format
contains an entry under a particular semantic category, the corresponding slot in the format unit is
filled with a pointer to another unit representing the entry itself.

Each semantic category has a unit representing it. These units have slots to hold the head word
of the entry, the original text, and slots for all possible modifiers.

Figure 7 illustrates the database units generated by the SYSTEM knowledge base to represent
the information format shown in Fig. 5. This database can now be queried by a request such as

(QUERY '(THE HEAD OF (THE PART OF (THE ARG2 OF CONN])) IS ?WHA f))

which will return the response

(A HEAD OF (THE PART OF (THE ARG2 OF CONN])) IS SHAFT)

Several other units are contained in the SYSTEM knowledge base. The units are named
explanation-text-displays, format-text-displays, bequeath-explanation, and keepictures.instances,
and they all relate to the pictures and displays that appear when the system is running. The remaining
units are comments, bequeath, and reduction.system. Comments holds notes for the designers
about changes that were made to the system. Bequeath is a special type of unit that contains pro-
cedural information that is attached to the conn unit. Since a connective cannot be picked as the
highlighted information, any saliency rating attributed to a connective must be passed down to its
arguments until the score ultimately reaches a format unit. This procedure handles that process.

Reduction.system is the central control for the system interface. This unit contains slots that
contain the procedures to initiate all system functions. Most of these procedures are attached to
mouse-sensitive icons in the system interface command panel.

THE TERSE-RULES RULE BASE

The Terse.rules class contains five subclasses: Transform, Categ, Negated.good.status,
General.infer, and Score. Rules that are designed to work towards similar goals are grouped in the
same rule class. The following is an overview of each of these rule classes accompanied by a
description of the member rules in each class.

The Transform class of rules performs operations that accomplish further normalization of
causal structures. Its objective is to change statements of the form "x is due to y" and "y impaired
x" into the canonical form "y caused x." Removing this variability while retaining the causal impli-
cations of the original statement, simplifies subsequent rules, since they do not have to look for the
different variations. The rules in this class are as follows.

* due.to.cause: Normalize sentences of the form "A is due-to B" into "B caused A."

* impair.to.cause: Change any statement of impairment, as in "A inhibits B," to "A causes B
to be BAD." Words indicating impairment are impair, inhibit, prevent, stop.

8

NRL REPORT 9154

Fig. 7 - Information format database units for
Drive shaft was found to rotate freely at the SSDG end

The Categ rules classify the semantic category entries contained in the formats. These
categories represent concepts that are considered to be important in the application, or that can be
used in later inferencing. In the present application, the concepts of CAUSE, QUANTITY, and BAD
are deemed important, and the concepts FAILURE, DAMAGE, and LOSS can be used in inferenc-
ing. Certain quantities (zero in particular) and the categories FAILURE, DAMAGE, and LOSS are
also subclassified as representing BAD conditions.

* catgz.cause: Assign a category of CAUSE to any of the following words: affect, cause,
make, produce, render, result.

* catgz.quant: Assign a category of BAD to any element modified by the word in-excess-of.

* bad.part.malfunc: In statements where a STATUS entry co-occurs with a PART entry and
the STATUS entry has been categorized as BAD, assign the category of MALFUNCTION-
ING to the PART.

9

Unit <CONNi>=
Class: CONN
Op: <OP1>
Argi: <FORMATI>
Arg2: <FORMAT2>

Unit <OP1> =
Class: OP
Op-type: RELATION
Head: FIAD
Text: FIND

Unit <FORMAT1> =
Class: FORMAT

Unit <FORMAT2> =
Class: FORMAT
Func: <FUN1>
Part: <PART1>
Status: <STATUS1>
Text: (DRIVE SHAFT ROTATE FREELY AT THE SSDG END)

Unit <FUNC1> =
Class: FUNC
Head: ROTATE
Text: ROTATE

Unit <PART1>=
Class: PART
Head: SHAFT
Text: (DRJVE SHAFT)

Unit <STATUS1> =
Class: STATUS
Head: FREELY
Text: FREELY

WAUCHOPE, MARSH, AND DIBENIGNO

* catgz.damage: Categorize a STATUS entry containing any of the following words as DAM-
AGE: bent break broken burn chip clog clogged corrode corroded crack damage erode ero-
sion leak scour seize seized shear sheared split warp warped wear wiped worn.

* catgz.failure: Any of the following words in a STATUS entry indicate FAILURE: abort
aborted bad drop erratic erratically failed error fail failure fault faulty improper improperly
inadequate loud low malfunction poor slippage slow spot vibration wrong.

* catgz.loss: Any of the following words in a STATUS entry indicate LOSS: inop inoperative
lack lose loss lost unable unusable.

* damage.is.bad: If something has been categorized as DAMAGE, then it should also be
categorized as BAD.

* failure.is.bad: If something has been categorized as FAILURE, then it should also be
categorized as BAD.

* Ioss.is.bad: If something has been categorized as LOSS, then it should also be categorized as
BAD.

* neg.func.malfunc: The PART in "PART not FUNC" is categorized as MALFUNCTION-
ING.

* damaged.part: A PART co-occurring with a STATUS which has been categorized as DAM-
AGE is given the category of DAMAGED.

The two rules contained in the Negated.good.status class simply check to see if something that
was not categorized as BAD was modified by a negation or a zero quantity. If such an occurrence is
found, the classifier of BAD is added. They are in a separate rule class from Categ because they are
conditional on certain information not having been found by Categ.

* neg.to.bad.status: If a STATUS entry has not been categorized as BAD but is modified by a
negation, then it is categorized as BAD. Example: "not good" - "bad."

* zero.to.bad: If a quantity of ZERO modifies a STATUS entry and the STATUS entry has not
already been categorized as BAD, categorize the STATUS as BAD.

General.infer contains a rule that performs domain independent deduction of the existence of a
bad state. This class was created to distinguish such domain independent rules from the domain-
specific causal and state deduction rules in MODEL.

* smoke.fire: If "X cause Y to be bad" then infer that "X is bad" as well.

The Score class contains all the rules that assign a score to anything in the information formats.
The scores assigned in these rules reflect what patterns of information are considered important in this
application.

* mention.part: Add 1 point to the format containing a mention of a PART because we are
interested in information about parts.

* investigation.show: In a statement of the form "INVEST show X," where the connective is
either of the words show or indicate, add 1 point to X because it indicates what an investiga-
tion revealed.

10

NRL REPORT 9154

* evidence: Add 1 point to any statement containing an element modified by an evidential
modifier such as show, indicate, reveal because evidence could be an indicator of the root
problem. This rule is like investigation.show, but handles cases where the evidential word is
formatted as a modifier rather than a connective.

* cause: In a statement of the form "X caused Y," add 2 points to X because causes are con-
sidered important.

* cause.may: In statements of the form "x may have caused y," the rule cause will add 2
points because of the word "cause." This rule then subtracts 1 point, because the modal indi-
cates uncertainty about the causal relationship.

* modal.obj: Add 1 point to the object of a statement of the form "x appears y" because this
represents an opinion about a condition. Connectives that trigger this rule are suspect,
appear, believe.

* modal.modifier: This rule is the same as modal.obj, but handles cases where the modal
word has been formatted as a modifier rather than a connective.

* find: Add 1 point to the object of a statement of the form "we found x" because we are
interested in the findings of any investigation or discovery. Connectives that trigger this rule
are find, determine, discover.

* neg.func.or.process: Add 8 points to the statement because it indicates that something is not
functioning.

* universal: Subtract 1 point from a statement containing any element modified by any of the
words all, each, every because these words indicate that the message writer is making gen-
eralizations, and we consider specifics to be more important.

* problem.is: Add 1 point to the object of any statement of the form "the X is Y," where X is
one of the following words: damage, difficulty, defect, failure, fault, malfunction, problem.
The motivation behind this rule is that we are interested in the root of any problem mentioned
in the message.

* bad.status: Add 10 points to any statement containing a status which has been categorized as
BAD. This is considered one of the most important criteria in this application.

* piece.evidence: Add 1 point to a statement containing a PIECE entry (particles, fragments,
chunks) because such words are evidence of damage somewhere in the system.

THE EQUIPMENT MODEL

The SUMMARY system, before the addition of the domain model, did a certain amount of
domain-independent inferring of equipment state and causality: knowing that part A impaired part B
means that A caused B to be in a negative state, it then inferred that part A must be in a negative
state as well. Conversely, however, the message writer might simply assert that parts A and B are
both in a negative state and leave the impair relation implicit, knowing that the reader would infer this
relations by using domain knowledge. The primary role of the equipment model in TERSE is to per-
form inferences of this sort.

11

WAUCHOPE, MARSH, AND DIBENIGNO

Domain knowledge can also be used in the natural language analysis phase to determine the
correct scope of linguistic constituents. For example, in the sentence Low lube oil and fail to engage
alarms sounded, the correct parse is derived by analyzing the sentence as having a conjoined subject
composed of the elements low lube oil alarm and fail to engage alarm. An incorrect parse derives if
we analyze the components of the subject as low lube oil and fail to engage alarms, which leads to
the analysis "the low lube oil sounded, and the fail to engage alarms sounded." A domain-
knowledge approach to ruling out this bad parse is to recognize that lube oil's function is not to sound
but to lubricate, and that there is only one Fail To Engage Alarm. Our approach to selection, how-
ever, has been to use distributionally determined semantic patterns to constrain analyses. The bad
parse above is ruled out by disallowing the conjoining of a STATUS (low lube oil)* with an ALARM
(fail to engage alarms). Hence the model is not required to take part in the selection process.

Two basic approaches are used to understand natural language with a structured domain model.
The first is frame instantiation, a common technique in knowledge-based natural language analysis.
By using this technique, the phrase starting air regulating valve locates the VALVE frame and creates
an instance of its subclass REGULATING-VALVE. The frame's :substance slot is filled with a
pointer to a newly created instance of the AIR frame, whose ffunction slot is filled with the value
START. The resulting instance contains general knowledge about what valves do, that this particular
valve functions to regulate air, and that the air's function is to start something. However, it does not
know what the valve's specific role is, or what it is that starting air starts. This approach is
equivalent to the knowledge we possessed when we first began to work with compressor CASREPs -

basic understanding of mechanical equipment, but little specific knowledge about the particular equip-
ment in question. We could guess about equipment status and causality, but without specific
knowledge about the particular equipment configuration, many of our guesses turned out to be
incorrect.

The second approach, which is the one we have taken, is to build a completely instantiated
model containing the actual components known to comprise the equipment in question. The phrase
starting air regulating valve is then used to locate in the model all those individual components that
are valves, whose function is to regulate, and whose processed-substance is an instance of air that has
starting functionality. In such a model we can incorporate not only general knowledge, but also the
specific information about what the air starts (the turbine) and where the valve fits into the overall
architecture of the compressor. This knowledge corresponds to the expertise of a reader familiar with
the particular equipment being discussed, and allows for increased and more accurate inferencing.
The drawback to this approach is that we must construct a new equipment model in detail for each
new domain (such as electrical system, propulsion system, and air system) of CASREP being pro-
cessed.

In constructing the model, we consulted Navy equipment manuals, which listed about 350 indi-
vidual components; 85 of these were incorporated into the model. These 85 components included all
the primary functional components of the compressor, and excluded low-level accessory items such as
pins, bolts, and washers that did not contribute substantially to a functional understanding of the
equipment's behavior. The lowest level functional items represented were atomic components such as
individual gears and shafts. Message writers would frequently refer generically to more primitive
physical components such as the splines on a shaft, the teeth on a gear or the blades on an impellor,
so these features were also included in the model, but modeled as collective entities rather than as dis-
tinct units.

*The selection process also involves attribute computation; in this instance there is a predicate adjective low of semantic class STATUS,
which causes the STATUS attribute to be computed for the noun phrase as a whole.

12

NRL REPORT 9154

The distributionally determined semantic categories that we use represent the basic classes of
information that are talked about in CASREPs. The semantic patterns in which these categories occur
represent the fundamental types of predications that the CASREP uses to communicate (such as mal-
function, investigation, determination of causality or equipment state, or repair action). These explicit
predication types serve as our guideline in determining what sort of inferences should be made when
using the equipment model. In the message of Fig. 1, a knowledge of the equipment domain leads an
expert reader to infer that a causal relationship is being implied between the worn splines and the
drive shaft rotating freely, and between the drive shaft rotating freely and the dropping oil pressure.
The causal predications were not stated explicitly because the inferences involved are simple ones for
the reader to make. Other causal inferences could also be made regarding this message fragment -

for instance, that the dropping oil pressure caused the alarm to sound, or that the alarm sounding
caused an investigation to take place. However, these inferences are of the "common-sense" variety
and do not represent predications that are likely to be explicitly asserted in a Casualty Report, since
its communicative function is to report on the causes of equipment failure only. The role of domain-
specific knowledge in our application is thus to extract those implied predications of equipment state
and causality that could have been stated explicitly but were not because of the simple inferencing
involved. To infer common-sense causal relations is not necessary for our application, and to attempt
to infer information that the writer had not intended to convey would begin to enter the realm of fault
diagnosis, which falls outside the task of message understanding.

Domain models can range from simple attribute lists to complex physical simulations, depending
on the needs of the current and anticipated future applications of the system. Since it appeared that
the inferences the model would have to make in our application would be only easy ones, we elected
to implement as simple an equipment model as possible that would be capable of making these infer-
ences. Since it is necessary to construct a new model for each CASREP equipment, we need for the
model construction process to be as straightforward as possible. Finally, it was important not only to
match the grain of the model against its intended use, but also against the granularity of the input data
it would be operating on (information formats). The correctness and content of the formats are
largely determined by heuristic means (distributional co-occurrence patterns of broad semantic
classes). The extent to which inferences about message content can be made is constrained by the
amount and consistency of relational information available in the format representation. Since both
the information formatting and SUMMARY system were low-grain in approach, we felt that a simi-
larly heuristic domain model would be a link of comparable strength in this chain.

Figure 6(b) shows the data flow through the MODEL knowledge base. The first step in using
the equipment model is to dereference each equipment name in the information format data against the
units in the model. This involves a matching phase and a disambiguation phrase. We can, then, use
the equipment model to perform domain-specific inferencing about the causal relationships between
the pieces of equipment named in the message. These steps are discussed in the sections that follow.

Nominal Dereferencing

In technical material such as equipment casualty reports, complex names containing long
sequences of premodifiers and postmodifiers are common [7]:

* ship's turbine start air system
* muffler assembly body end flange
* discharge hose from surge air valve assembly
* low-speed coupling from diesel to SAC lube oil pump
* number 4 SAC 21 inch woven cotton covered rubber surge air hose

13

WAUCHOPE, MARSH, AND DIBENIGNO

It is also clear from the message data that writers often do not refer to pieces of equipment by their
proper names as given in the Navy manuals, but instead they use a variety of descriptive naming con-
ventions. For example, we have the following references to the part named drive shaft:

* shaft
* drive shaft
* SAC shaft
* compressor shaft
* input shaft
* spline shaft
* SAC drive shaft
* SAC input shaft
* input spline shaft
* input drive shaft
* spline drive shaft
* SAC input drive shaft
* splined input drive shaft
* SAC spline input drive shaft
* connecting shaft
* 581 732-1

Clearly, we could not simply provide the drive shaft unit with a synonym list of all possible
names that could be used for it, since new data will likely present unanticipated new names. Our
solution was to recognize that left modifiers in equipment names fill only a limited set of descriptive
roles. These roles represent either attributes of the equipment or relations of the equipment to other
components. In an object-oriented representation, the attributes can be represented as slots attached to
the equipment classes in the domain model. The following slot-filler representation of the drive-shaft
unit, for example, captures all the modifier roles exhibited by the previous list of references:

Unit < drive-shaft > =
:name "drive shaft"
:partno 581732-1
:isa shaft
.function drive
: supercomponent < starting-air-compressor >
:components < drive-shaft-spline >
:input-from <drive-adapter-hub>
:output-to <ring-gear-hub>

In spline shaft, the shaft is described by a distinctive component (e.g., wheel chair). In SAC
shaft, it is described by its supercomponent (e.g., automobile engine). Since the shaft is a component
of the starting air compressor but the equipment the shaft gets input from (drive adapter hub) is not,
the shaft can be described as a SAC input shaft. And since the shaft connects the drive adapter hub
and ring gear hub, it can be referred to as a connecting shaft. In a more complex nominal such as
starting air compressor shaft, the match must be recursive. To determine if starting air compressor
matches the unit in the shaft's :supercomponent slot, it must first determine that starting air matches
the unit in <starting-air-compressor>'s :substance slot. This in turn requires that starting match
some attribute of the substance. The head noun of an equipment name must match either the object's
class (:isa), or a value in either its :partno or :aka slots. :Aka is used primarily for acronyms, such
as SAC, GTRB (gas turbine) and SSDG (ship's service diesel generator).

14

NRL REPORT 9154

Slots can contain either atomic values (drive) or pointers to other units (< drive-shaft-spline >).
The links to other units form the model into a directed multigraph. Methods attached to the equip-
ment units in the model perform link traversals to determine if two units have a part-of or functional-
connectivity relationship. For example, the method is-directly-connected-to can determine that
<starting-air-compressor> and <drive-adapter> have a direct functional connection to each
other, because (1) neither is a subcomponent of the other, and (2) a subcomponent of the first
(< drive-shaft >) has an :input-from link to a subcomponent of the second (< drive-adapter-hub >).

The following are the attributes we have found necessary to capture the primary left-modifier
roles in CASREP equipment names:

* partof (pump shaft)
* parts (spline shaft)
* subclass (turbine engine)
* input-from (diesel hub)
* output-to (ring gear hub)
* function (regulating valve)
* substance (oil pump)
* behavior (lift valve)
* shape (ring gear)
* fuel (gas turbine)

Matching

Since the syntactic analyzer uses only broad classes of semantic information, for the most part it
is unable to structurally analyze complex nominals in a semantically significant manner. As a result,
PART entries in the information formats consist simply of the head noun accompanied by the flat text
string of the entire nominal. The matching of these nominal strings against model objects is done in
the postsyntactic phase using another parser, the chart parser PROTEUS [8]. PROTEUS provides a
convenient and efficient computational mechanism for generating host-modifier bindings in the string,
testing each of these against the equipment model, and returning pointers to those model objects that
allowed an analysis to succeed. We are currently transitioning to PROTEUS as our syntactic analyzer
as well, so this approach may make it possible to interleave the model-based nominal dereferencing
with the syntactic analysis, greatly reducing the problems of noun phrase isolation and sentential
ambiguity.

PROTEUS grammars consist of context-free BNF (Backus-Naur Form) productions augmented
by arbitrary test conditions called restrictions. In our application, the BNF component generates all
the linguistically feasible host-modifier analyses of the string, and the restrictions then test each candi-
date analysis for semantic validity against the equipment model. The BNF grammar and dictionary
used to drive the parse have as their preterminal symbols the semantic categories PART, FUNC,
PROP, STATUS, and ALARM, as follows:

1. < UNIT > ::= < EQUIP > < PROPERTY >.
2. < EQUIP > ::= < PART > < ATOM > < EQUIP > I < UNIT > < EQUIP> >

<EQUIP> "assembly" | <ALARM>.
3. < PROPERTY > :: = < PROP > I < EQUIP > < PROPERTY> >

< STATUS > < PROPERTY >.
4. < ATOM > ::= < FUNC > I < STATUS > I < SHAPE >.
5. < SHAPE > ::= < PART >.

15

WAUCHOPE, MARSH, AND DIBENIGNO

Production 1, for example, states that the nominals to be matched against the model are either names
of pieces of equipment or names of equipment properties (such as oil pressure). Production 2
describes the various ways that an equipment name might be analyzed, such as PART (pump or oil),
ATOM EQUIP (lube oil), or UNIT EQUIP (oil pump, lube oil pump). The recursive definition of
EQUIP allows lube oil pump to be analyzed as both

(UNIT
(EQUIP
(ATOM (FUNC lube))
(EQUIP (UNIT (EQUIP (PART oil)))

(EQUIP (PART pump)))))

(i.e. a "lubricating oil-pump"), or

(UNIT
(EQUIP
(UNIT
(EQUIP
(ATOM (FUNC lube))
(EQUIP (PART oil))))

(EQUIP (PART pump))))

(i.e., a "lubricating-oil pump").

We want the first analysis to be considered semantically inconsistent by the equipment model. During
each analysis, restrictions attached to the EQUIP production consult the model to see if an object can
be located whose structure matches the analysis. For example, restriction VALID-EQUIP accepts
turbine, GTRB, and LM2500 as minimal equipment names because they are respectively the class,
acronym, and part-number of the <gas-turbine> unit in the model. VALID-ATOM-MODIFIER
accepts lube oil because one of the units matched by oil has lubrication as a value of its ffunction slot.
Also, VALID-UNIT-MODIFIER accepts pump shaft because at least one of the units that matches
shaft is a subcomponent of one of the units that matches pump. If a restriction succeeds, it adorns the
root node of the parse with a pointer to the matched model object(s), and signals success. The algo-
rithms of these restrictions on EQUIP are as follows:

VALID-EQUIP (in production EQUIP - PART):
loop for model-object in model do

if either model-object is in class PART
or the part-number of model-object is PART
or an acronym of model-object is PART
then add model-object to the MATCHING-UNITS attribute of the present node

if MATCHING-UNITS return true else false

VALID-ATOM-MODIFIER (in production EQUIP - ATOM EQUIP):
loop for model-object in MATCHING-UNITS of element EQUIP do

if some slot of model-object contains ATOM
then add model-object to the MATCHING-UNITS attribute of the present node

if MATCHING-UNITS return true else false

VALID-UNIT-MODIFIER (in production EQUIP - UNIT EQUIP):
loop for model-object-1 in MATCHING-UNITS of element UNIT do

16

NRL REPORT 9154

loop for model-object-2 in MATCHING-UNITS of element EQUIP do
if either

model-object-2 is a subcomponent of model-object-1
or model-object-2 is-directly-connected-to model-object-1
or some other slot of model-object-2 contains model-object-1

then add model-object-2 to the MATCHING-UNITS attribute of the present node
if MATCHING-UNITS return true else false

As an example of how the matching proceeds, we consider the nominal lube oil pump shaft and
the dictionary entries

(lube (FUNC))
(oil (PART))
(pump (PART)(FUNC))
(shaft (PART))

1. The parser begins by entering (FUNC lube) in the chart, which it then analyzes as ATOM
using the production < ATOM > :: = < FUNC >.

2. On entering (PART oil) in the chart, the parser must first verify the constraint VALID-
EQUIP before it can analyze this word as an EQUIP using the production <EQUIP>
::= <PART>. Since the model contains at least one object that :isa oil - <diesel-
oil> and <lube-oil> - the restriction succeeds. The EQUIP node gets a pointer to
those two objects.

3. The parser then attempts to conjoin nodes 1 and 2 into a single constituent, using option 2
of production 2. This requires that the restriction VALID-ATOM-MODIFIER succeed. It
does, because the <lube-oil> object pointed to by node 2 has "lubrication" as the filler
of one of its attribute slots (:function). This node now contains a pointer to <lube-oil>
only.

4. pump is entered in the chart in its FUNC sense, and analyzed as an ATOM.

5. When pump enters the chart in its PART sense, it is analyzed as EQUIP with a pointer to
the only pump in the model, <oil-pump-assembly>. This node is then permitted to con-
join with both node 2 (i.e. "oil pump") and node 3 ("lube-oil pump") by restriction
VALID-EQUIP-MODIFIER, because the pump has a slot (:substance) containing a pointer
to <lube-oil>. However, it cannot conjoin with node 1 ("lube pump") because the
pump does not have "lubrication" as an attribute.

6. On processing the final word shaft, a large ambiguity set of objects is found to match that
word. None of these objects can conjoin with nodes 1, 2, 3 or 4, indicating that there is
no "lube shaft," "oil shaft," or "pumping shaft" in the model. This node conjoins with
node 5, however, since one object - the <pump-drive-shaft> - has a :supercomponent
link to <oil-pump-assembly>. The root node of the completed parse now contains a
pointer to that set of model objects that the entire string successfully matched (the single
object <pump-drive-shaft>).

Based on the BNF alone, there are 14 possible interpretations of lube oil pump shaft. For exam-
ple, it might mean a "shaft that pumps lube oil," just as start air check valve is a valve that checks
start air. Analyses such as this are rejected by the model, since no such shaft exists. The only
analysis that matches a domain object is "shaft that is a component of a pump such that the pump

17

WAUCHOPE, MARSH, AND DIBENIGNO

processes lube oil," since that type of oil exists, there is a pump that processes it, and there is a shaft
that is a component of that pump.

Also the BNF tells the matcher whether a modifier can represent a structured unit in the model
(PART, PROP) or an atomic slot value (FUNC, STATUS, SHAPE). Since at the present time we do
not have a semantic category representing the concept of shape, we allow PART to serve in both
roles to handle such nominals as ring gear, where ring is not referring to a piece of equipment (e.g.,
an o-ring), but to the :shape attribute of the gear.

Contextual Disambiguation

Frequently the matching described in the previous section does not identify a single domain
object, but it returns an ambiguity set of several possible referents, because of underspecification by
the message writer. Underspecification can have several sources:

* The writer has fully specified a piece of equipment earlier in the message and is now referring
to it in an abbreviated manner.

* The message class can be used to understand the reference (in SAC CASREPs the name unit
always refers to the starting air compressor).

* The discourse context can be used to disambiguate the reference (alarm sounded can be
disambiguated by using the previous message clause lube oil pressure was dropping).

The maintenance of a focus list [9] is a common method for dealing with such referential ambi-
guities. This is a list of entities that have already been referred to in the message and are used for
resolving subsequent ambiguous references. Techniques such as spreading activation or marker-
passing [101 can determine semantic relationships between the prior and subsequent referents. Our
disambiguation algorithm most closely resembles spreading activation, in that it takes all the candidate
referents and finds the subset of these that forms the most tightly connected cluster of linked nodes in
the equipment model graph. The algorithm operates as follows.

After matching, each PART/PROP/ALARM nominal in the message has an associated
matching-units set of possible referents. First, unambiguous (singleton) matching-units sets are
deleted, and their content is transferred to the referent attribute of the matched nominal. Each
matching-units set that remains represents an ambiguity set (unresolved referent). The members of
these ambiguity sets are then scored by the following procedure.

Each resolved referent is paired with each ambiguity set member that follows it in the message.
Each ambiguity set member is scored by how closely it is linked to the referent, both by model links
(such as :component and :input-from) and by the distance separating the two referencing assertions.
The algorithm then tries to find connections between each matching-units set member and each
resolved referent and ambiguity set member in subsequent formats. After all scoring is finished, the
highest scoring item in each ambiguity set is chosen as the referent of the corresponding nominal.
Thus, even if every part reference in a message were to be underspecified, the most tightly connected
subgraph of the model that matches the set of nominals will be returned, with a high likelihood of
representing the components in question. The algorithm itself is as follows:

For each formatfi do:
fl-matches - merge all matching-units sets of entries in fi
fl-referents - collect all referents of entries in fl

18

NRL REPORT 9154

For each i in fl-referents do:
For each format J2 in subsequent formats do:

f2-matches - merge all matching-units sets of entries in f2
For each j in f2-matches do

score - SCORE (i, J)
Add score to j's score

For each i in fl-matches do:
For each format ft in subsequent formats do:

f2-matches - merge all matching-units sets of entries in J2
ft-referents - collect all referents of entries in ft
For each j in ft-referents do

score - SCORE (i,])
Add score to i's score

For each j in f2-matches do
score - SCORE (i,)
Add score to both i's and j's score

Function SCORE (i, J):
link-distance - either

0 if i and j are the same object;
the number of :input-from or :output-to links separating i and j;
the number of :supercomponent or :components links separating i and j;
0 if some other slot (e.g. :substance) of one item points to the other item;
otherwise, nil.

If link-distance= nil, return 0
else

format-distance format.no (fl) - format.no (fty
return 1/(1 + link-distance) + 1/(1 + format-distance)

As an illustration, in the message fragment shown in Fig. 8, all part references are unambiguous
except for spline shaft, which matches four objects in the model. This is the first (and only) mention
of this piece of equipment in the message, so we cannot count upon the first reference to an entity to
be unambiguous. The disambiguation routine generates the score matrix shown in Fig. 9, where each
row is a match and each column is another object referred to in the message. The <drive-shaft>
unit gets the highest score, primarily because it is more closely linked in the model to the <drive-
adapter-hub-spline> and <ships-service-diesel-generator> (SSDG) than are the other shaft units.
For instance, the <drive-shaft> is separated from the SSDG by only two functional-connectivity
links (score = 0.33), whereas the <gear-shaft> is separated from the SSDG by six such links
(score = 0.14). Since the format mentioning the SSDG immediately follows the one mentioning the
shaft, a format-distance score of 0.5 is added to obtain the matrix entry for each.

While conducting operational checks, experienced engagement malfunction.
Discovered that the engine drive adapter hub internal splines had sheared,

causing the SAC to fail to engage.
Spline shaft rcvd w assist from Desron 8.
Installed on #3 SSDG.
Tested sat on 25 Feb.

Fig. 8 - Message 2

19

WAUCHOPE, MARSH, AND DIBENIGNO

___ ___ _ SPLINE SAC SSDG TOTAL

DRIVE SIHAFT 0.83 0.83 0.83 2.50

GEAR SHAFT 0.50 0.83 0.64 1.98

COUPLING DRIVE SHAFT 0.47 0.83 0.62 1.93

WH-EEL SI-AFT 0.40 0.75 0.57 1.72

Fig. 9 - Disambiguation score matrix

The MODEL Rule Base

The MODEL knowledge base also contains a set of equipment-general rules that, in conjunction
with the equipment model, can infer equipment state and causal relations from the content of a
casualty report. Several rules also take part in the nominal dereferencing process.

The root rule class Model-rules is divided into four rule sets: Preprocess, Postmatching, Find-
referents, and Inferencing.

The Preprocess rule set is run before nominal matching against the equipment model is under-
taken. It contains one rule at present.

generic-component-head: for a PART entry that ends in the word part or component
(such as valve parts), create a new PART unit representing the left modifier (in this case,
valve) for the matcher to dereference, and assert that the new PART entry has a
supercomponent-part relationship to the current entry (e.g. valve is the supercomponent of
valve parts).

The Postmatching rule set is run after matching and prepares the system to perform nominal
disambiguation. *

is-property-of-same-format: if a PROP entry co-occurs with a PART entry, and an equip-
ment unit matching the PROP is the same as the :output-property of the referent of the
PART, then assert that the unit is the referent of the PROP. Example: pump pressure is
formatted into the two entries PART (pump) and PROP (pressure). Assert that pressure
refers to <oil-pressure> because that is the output property of the oil pump.

has-property-same-format: if a PROP entry co-occurs with a PART or ALARM entry,
and an equipment unit matching the PART/ALARM has as either its :trigger-condition or
:output-property the referent of the PROP, then assert that the equipment unit is the
referent of the PART/ALARM. Example: in oil pressure alarm, assert that the referent of
alarm is <lube-oil-pressure-alarm> because <oil-pressure> is the trigger condition of
the alarm.

has-substance-same-format: if a PART entry co-occurs with a PROP or ALARM entry,
and the referent of the PART is the :substance of an equipment unit matching the
PROP/ALARM, then assert that the equipment unit is the referent of the PROP/ALARM.
Example: in oil pressure, assert that the referent of pressure is <oil-pressure> because
its :substance is <lube-oil>.

*Normally a noun phrase like pump pressure would be handled entirely by the matcher. However, the formatting component splits certain
PART/PROP/ALARM nominals into more than one format entry, making it appear to the matcher that the head noun (i.e., pressure) is an
underspecified nominal. The first three rules in this rule set can prevent an unnecessary call to the disambiguation routine by placing the
head noun back in its original context.

20

NRL REPORT 9154

name-matches-exactly: if an equipment unit that matches a PART entry has exactly the
same name as the PART entry text string, increase the score of this match by 1 point.

only-match: if a PART/PROP/ALARM entry only matched a single unit in the equipment
model, then assert that the unit is the referent of the entry (disambiguation is unnecessary).

delete-matches: if the referent of an entry has been found, then delete all other candidate
matches of the entry.

After the disambiguation/focusing routine is run, the Find-referents rule set selects the highest
scoring match for each nominal, and also explicitly asserts the existence of any assembly/component
or input/output links that exist between named units.

highest-score: if an entry has more than one matching equipment unit, select as the
referent of the entry the match having the highest score.

supercomponent-part: if the referent of one PART entry is the :supercomponent of
another PART entry, assert that the first entry has a supercomponent-part relation to the
second entry.

input-from-part: if the referent of one PART entry is functionally downstream from the
referent of another PART entry, assert that the first entry has an input-from-part relation to
the second entry.

Finally, the Inferencing rule set performs model-based causal and state inferencing on the con-
tents of the message.

infer-bad-supercomponent: if a STATUS entry cannot be classified as either BAD or nor-
mal, and co-occurs with a PART entry that has a supercomponent-part relation to another
PART entry whose state is MALFUNCTIONING, then infer that the classification of the
STATUS entry is BAD.

cause-bad-supercomponent: if a PART entry in one assertion is the supercomponent-part
of a PART entry in another assertion, and both PARTs are MALFUNCTIONING, then
infer that the condition in the first assertion was caused by the condition in the second
assertion.

cause-bad-downstream: if a PART entry in one assertion has an input-from-part relation
with a PART entry in another assertion, and both PARTs are MALFUNCTIONING, then
infer that the condition in the second assertion caused the condition in the first assertion.

infer-alarm-trigger-property: if an assertion mentions that an ALARM went off, and it
has not been asserted elsewhere in the message that the :trigger-condition of the ALARM
is in a BAD state, then make just such an assertion.

direct-cause-bad-property: if an assertion states that a PART is MALFUNCTIONING,
and another assertion states that the :output-property of the PART's referent is BAD, then
assert that the condition in the first assertion caused the condition in the second assertion.

indirect-cause-bad-property: if an assertion states that the :output-property of some equip-
ment unit is BAD, and another assertion states that a PART is MALFUNCTIONING, and
the PART's referent is either functionally upstream from or is a supercomponent of the

21

WAUCH)PE, MARSH, AND DIBENIGNO

equipment unit, then assert that the condition in the second assertion caused the condition
in the first assertion.

causal-chain: if condition A caused condition B, and condition B caused condition C, then
assert that condition A also caused condition C.

In addition to these rules, the MODEL knowledge base also contains four LISP methods for
doing link traversals of the equipment model, and one method to run the pattern matcher.

Model-Based Inferencing

Just as the part-whole and functional-connectivity links in the model were used heuristically to
dereference equipment names, these links can also be used to perform heuristic inferring of equipment
state and causality. In the message shown in Fig. 10, the deferencing procedures first determine that
valve in the final sentence refers to the same object as starting air regulating valve in the first sen-
tence. Since both the valve and its parts are in a negative state, this leads us to suspect that the writer
is implying a causal relationship between the two predications. Either the latter is providing an expla-
nation for the former (in which case we infer that parts corroded caused valve failed), or the latter is
describing the result of the former (valve failed caused parts corroded). We use four heuristics in
making causal/state inferences such as this.

Starting air regulatinlg valve failed.
Unable to consistently start nr lb gas turbine.
Valve parts excessively corroded.

Fig. 10 - Message 3

1. Heuristic 1 (still experimental) involves the subclassification of state-predicating words into
three groups. The DAMAGE group includes such words as fail (when applied to low-level
components like gears and bearings), fault, corrode, shear, damage, wear, erode, and
strip. FAILURE connotes decreased functional behavior and includes such words as fail
(when applied to higher level components), low, slip, drop, and seize, as well as any
FUNCTION words that have been negated. LOSS connotes loss of equipment usage by
ship personnel and includes words like loss, inoperative, and unable. Our test data indi-
cate that inferrable causality always flows from the more specific classes of state-
predicators to the same or more general classes. FAILURE can be inferred to cause either
FAILURE or LOSS, but LOSS cannot be inferred to cause FAILURE or DAMAGE, for
example. In the message of Fig. 10, this heuristic confirms the inference that valve parts
corroded (DAMAGE) probably caused valve failed (FAILURE). Had the failure caused
the corrosion (for example allowing salt water to enter the valve), the inference would be
more difficult to make, and the writer would probably have expressed the causal relation-
ship explicitly. Since DAMAGE is the lowest level class of state-predicating words, there-
fore, we do not attempt to infer causes of damage. Message writers tend to be explicit
about causes of physical damage, since the inferences involved are often not straightfor-
ward.

2. The second heuristic prefers flow of causality from component to assembly, rather than
from assembly to component. Applied to the message of Fig. 10, it leads to the inference
that valve parts corroded caused valve failed rather than vice versa. In our test data we
have found no clear instances where an inference of flow of causality from assembly to

22

NRL REPORT 9154

component can be made. We have found some instances where the malfunctioning of a
piece of equipment resulted in damage to itself or its components, but the writer clearly
was aware that the inference would be difficult to make and so described the causality
explicitly: Suspect drive shaft slipped backwards and ground down the teeth [on the shaft],
due to installation defect. Had the writer simply said Drive shaft slipped backwards. Teeth
ground down, the simpler inference would have been that the worn teeth (DAMAGE)
allowed the shaft to slip (FAILURE). So if an assembly and component are in negative
states and no explicit causal relationship is mentioned, we infer flow of causality from the
component to the assembly.

3. Besides parent-child links, we also use the model's functional-connectivity links (:input-
from and :output-to) to infer causal relations. In the message of Fig. 10, the model unit
referred to by starting air regulating valve has an :output-to link to the unit referred to by
gas turbine. Since both parts have been described as malfunctioning, Heuristic 3 infers
that the valve's malfunction was responsible for the turbine's malfunction, since the latter
is functionally "downstream" from the former. This rule is heuristic in that we do not
model the precise nature of the functional connectivity (that the valve passes pressurized
air to the turbine, the valve is regulating the amount of this air, the turbine requires suffi-
cient air to start, and failure of the valve means insufficient flow of air to the turbine).
We simply know that the valve is not performing its function properly and that the turbine
is functionally dependent on that valve in some way. It is possible for negative state to
flow "upstream" through the system, as for example in the message fragment shown in
Fig. 11. Here, the SAC's FAILURE (seized) caused its input component drive shaft to be
in a FAILURE state (remain stationary), which in turn caused the shaft's input device
drive adapter hub to acquire DAMAGE (shear). Since these would probably be difficult
inferences for the reader to make, the message writer described the flow of malfunction
causality explicitly.

SAC apparently seized during clutch engagement causing input
drive shaft to remain stationary while drive adapter hub on
SSDG continued to rotate.
Drive shaft sheared all internal gear teeth from drive adapter
hub.

Fig. 11 - Message 4

4. A final use for the domain model is in the disambiguation of equipment status. This is sel-
dom necessary, but does provide the system with additional robustness. Referring again to
the message of Fig. 1, freely is a status word that cannot simply be classified as
FAILURE, because in many contexts it could just as easily serve as a positive indicator.
However, the context states that the shaft's splines are worn and that there are loud noises
from drive end, both of which suggest that the shaft is malfunctioning. Since freely is an
unclassified status word, the system then infers that freely probably indicates malfunction
in this case. Using Heuristics 1 and 2, the system can then infer that this malfunction was
caused by splines worn. Again, this heuristic does not require that the relationship be
modeled in any more detail (that resistance between splines is how the shaft transmits
torque, rotation is the "carrier" of torque, and freely connotes lack of resistance).

Usually, we do not model the functional behavior of each piece of equipment, but simply
represent the flow of functionality from one piece to another by links connecting the two. In certain
cases, however, it becomes necessary to represent what properties are being added to the functional

23

WAUCHOPE, MARSH, AND DIBENIGNO

medium by a piece of equipment. This is because the CASREP writers frequently refer to certain
properties explicitly. To make causal inferences between the property and a piece of equipment, it is
necessary to know the property's origin and destination. In the message of Fig. 1, to infer that the
drive shaft's rotating freely was the cause of the drop of oil pressure, it is necessary to know that the
origin of oil pressure is the oil pump assembly. Since no other possible cause of drop of oil pressure
was mentioned (such as an oil leak), the system infers that the pump was malfunctioning. It can then
infer that the cause was the malfunctioning of a piece of equipment (the drive shaft) functionally
upstream from the pump. As this example illustrates, the system can infer the states of pieces of
equipment not mentioned at all in the message (the oil pump assembly), just by following the chain of
connectivity links between two units that were mentioned, drive shaft and LO pressure.

Functional feedback loops within the equipment make causal inferencing more difficult. For
example, the drive shaft provides power to the oil pump and enables it to function, but the same oil
that the pump pressurizes also lubricates the drive shaft. So in the message of Fig. 1, it is certainly
possible that the drop of oil pressure caused the splines to wear, rather than the other way around. In
this particular instance, our first heuristic (preferring the progression of malfunction from more
specific to more general cases) would resolve the matter, since the causation of DAMAGE (worn) by
FAILURE (drop) is the less likely occurrence. Had the writer not mentioned splines worn in the
message, however, this approach would not work. It is likely that an expert reader considers lubrica-
tion to be only a secondary or support functionality within the equipment, and so prefers an interpre-
tation that involves the primary flow of mechanical functionality. At present. we simply do not
represent secondary functionality such as lubrication, because transforming the model from an acyclic
to a cyclic graph would greatly increase the complexity of doing network traversals. A solution
would be to tag functional links as either primary or secondary. This would add one more dimension
to the graph but would allow it to remain acyclic.

SAMPLE RUN

We now present a complete trace generated by the system as it processed the message of Fig. 1.
Comments (lines beginning with semicolons) have been added manually for clarification.

The system first reads in the information format representation of the message from a text file.
The contents of the file appear as follows.

9.1.1
SAC RECEIVED HIGH USAGE DURING TWO BECCE PERIODS.

(CONN (OP (REL-CLAUSE (HEAD T-EXPAND-REFPT) (TEXT T-EXPAND-REFPT))) CONNI
(ARGI
(FMT (TEXT SAC RECEIVE PAST HIGH USAGE DURING PERIOD PLURAL) FORMATI

(PART (HEAD SAC) (TEXT SAC))
(FUNC (HEAD USAGE)

(MODS (EVID (HEAD RECEIVE) (TEXT RECEIVE _ PAST)))
(TEXT HIGH USAGE))

(EVNT-TIME (TPREP2 DURING)(REFPT PERIOD))
(TIME (VTENSE PAST))))

(ARG2 (FMT (TEXT TWO BECCE PERIOD PLURAL) ;;; FORMAT2
(STASK (HEAD PERIOD)(TEXT TWO BECCE PERIOD PLURAL)))))

9.1.2
CCS RECEIVED A REPORT THAT LO PRESSURE WAS DROPPING.

(CONN (OP (EMBEDDED (HEAD EMBEDDED-N) (TEXT EMBEDDED-N))) CONN2
(ARGI
(FMT (TEXT CCS RECEIVE PAST A REPORT LUBE OIL PRESSURE DROP PAST PROG) FORMAT3

(ORG (HEAD CCS) (TEXT CCS))
(MSG (HEAD REPORT)

24

NRL REPORT 9154

(DET A)
(MODS (EVID (HEAD RECEIVE) (TEXT RECEIVE PAST)))
(TEXT REPORT LUBE OIL PRESSURE DROP PAST PROG))))

(ARG2
(FMT (TEXT LUBE OIL PRESSURE DROP PAST PROG) FORMAT4

(PROP (HEAD PRESSURE) (TEXT PRESSURE))
(PART (HEAD LUBE - OIL) (TEXT LUBE OIL))
(TIME (VTENSE PAST _ PROG))
(STATUS (HEAD DROP) (TEXT DROP _ PAST _ PROG)))))

9.1.3
ALARM SOUNDED.

(FMT (TEXT ALARM SOUND PAST) FORMAT5
(ALARM (HEAD ALARM) (TEXT ALARM))
(FUNC (HEAD SOUND) (TEXT SOUND PAST))
(TIME (VTENSE PAST)))

9.1.4
LOUD NOISES WERE COMING FROM THE DRIVE END DURING COAST DOWN.

(CONN (OP (REL-CLAUSE (HEAD T-EXPAND-REFPT) (TEXT T-EXPAND-REFPT))) CONN3
(ARGI
(FMT (TEXT LOUD NOISE PLURAL COME PAST PROG FROM THE FORMAT6

DRIVE END DURING COAST DOWN)
(STATUS (HEAD NOISE) (TEXT LOUD NOISE PLURAL))
(PARTLOC (HEAD COME) (TEXT COME PAST PROG))
(AREA (HEAD END) (DET THE) (TEXT DRIVE END))
(EVNT-TIME (TPREP2 DURING) (REFPT COAST_ DOWN))
(TIME (VTENSE PAST PROG))))

(ARG2
(FMT (TEXT COAST DOWN) (STASK (HEAD COAST - DOWN) (TEXT COAST DOWN))))) FORMAT7

9.1.5
DRIVE SHAFT WAS FOUND TO ROTATE FREELY AT THE SSDG END.

(CONN (OP (RELATION (HEAD FIND) (TEXT FIND PAST) (TIME (VTENSE PAST)))) CONN4
(ARGI (FMT)) ;;; FORMAT8
(ARG2
(FMT (TEXT DRIVE SHAFT ROTATE FREELY AT THE SSDG END) FORMAT9

(PART (HEAD SHAFT) (TEXT DRIVE SHAFT))
(STATUS (HEAD FREELY)(TEXT FREELY))
(FUNC (HEAD ROTATE) (TEXT ROTATE)))))

9.1.6
SPLINES WERE EXTENSIVELY WORN.

(FMT (TEXT WEAR PAST EXTENSIVELY SPLINE PLURAL) FORMAT1O
(STATUS (HEAD WEAR) (TEXT EXTENSIVELY WEAR PAST))
(PART (HEAD SPLINE) (TEXT SPLINE - PLURAL))
(TIME (VTENSE PAST)))

Now the system performs matching of the TEXT strings of all the PART/PROP/ALARM
entries in these formats against the equipment model, finding either singleton matches or ambiguity
sets.

(SAC) matches SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR
(LUBE OIL) matches LUBE-OIL
(DRIVE SHAFT) matches COUPLING-DRIVE-SHAFT
(DRIVE SHAFT) matches DRIVE-SHAFT
(DRIVE SHAFT) matches OIL-PUMP-SHAFT
(SPLINE) matches DRIVE-SHAFT-SPLINE
(SPLINE) matches DRIVE-ADAPTER-HUB-SPLINE

25

WAUCHOPE, MARSH, AND DIBENIGNO

(SPLINE) matches WHEEL-SHAFT-SPLINE
(SPLINE) matches GEAR-SHAFT-SPLINE
(SPLINE) matches COUPLING-DRIVE-SHAFT-SPLINE
(ALARM) matches COMPRESSOR-FAIL-TO-ENGAGE-ALARM
(ALARM) matches LUBE-OIL-PRESSURE-ALARM
(PRESSURE) matches OIL-PRESSURE
(PRESSURE) matches AIR-PRESSURE

Next, the system performs some simple predisambiguation routines. Although SAC only
matches one model unit, each of the other nominals matches more than one unit and needs further
disambiguation. (The nominal lube oil pressure had been decomposed by the formatting component
into two entries, leaving the head noun pressure ambiguous even though the entire noun phrase is not;
rule has-substance-same-format quickly "disambiguates" pressure by assuming that lube oil is part
of its description.) Rule name-matches-exactly increases the weight of a match in which the name
used in the message is the same as the actual name of the piece of equipment as given in the Navy
manuals. Rule only-match asserts that a singleton match is the correct referent of a nominal, and
once the referent is asserted, rule delete-matches deletes all the tentative candidates.

Running rule NAME-MATCHES-EXACTLY in world *BACKGROUND*
(DRIVE SHAFT) matches the proper name of # [Unit: DRIVE-SHAFT MODEL]

Running rule NAME-MATCHES-EXACTLY in world *BACKGROUND*
(LUBE OIL) matches the proper name of # [Unit: LUBE-OIL MODEL]

Running rule ONLY-MATCH in world *BACKGROUND*
believe that the referent of (LUBE OIL) is LUBE-OIL

Adding (THE REFERENT OF FORMAT4-PART IS LUBE-OIL) to *BACKGROUND*

Running rule DELETE-MATCHES in world *BACKGROUND*
Retracting (A MATCH OF FORMAT4-PART IS MATCH108) from *BACKGROUND*

Running rule HAS-SUBSTANCE-SAME-FORMAT in world *BACKGROUND*
believe that the referent of (PRESSURE) is OIL-PRESSURE

Adding (THE REFERENT OF FORMAT4-PROP IS OIL-PRESSURE)
to *BACKGROUND*

Running rule DELETE-MATCHES in world *BACKGROUND*
Retracting (A MATCH OF FORMAT4-PROP IS MATCH 119) from *BACKGROUND*

Running rule DELETE-MATCHES in world *BACKGROUND*
Retracting (A MATCH OF FORMAT4-PROP IS MATCH120) from *BACKGROUND*

Running rule ONLY-MATCH in world *BACKGROUND*
believe that the referent of (SAC) is SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR

Adding (THE REFERENT OF FORMATI-PART IS SHAFT-DRIVEN-AIR-
CENTRIFUGAL-COMPRESSOR) to *BACKGROUND*

Running rule DELETE-MATCHES in world *BACKGROUND*
Retracting (A MATCH OF FORMATI-PART IS MATCH107) from *BACKGROUND*

26

NRL REPORT 9154

The truly ambiguous nominals that remain are alann, drive shaft and spline. Next, the system
runs the focusing/disambiguation routine to choose referents for these nominals. Whenever a connec-
tion is found between a matched object and some other object referenced in the message, a score is
generated and added to the overall score of the matched object. For brevity, we show only those
pairings in which such a connection is found.

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format 5
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.25

testing match # [Unit: COMPRESSOR-FAIL-TO-ENGAGE-ALARM MODEL] in format 5
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.33333334

testing match # [Unit: OIL-PUMP-SHAFT MODEL] in format 9
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL
in format 1 score = 0.33333334

testing match # [Unit: DRIVE-SHAFT MODEL] in format 9
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.33333334

testing match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.33333334

testing match # [Unit: COUPLING-DRIVE-SHAFT-SPLINE MODEL] in format 10
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.25

testing match # [Unit: GEAR-SHAFT-SPLINE MODEL] in format 10
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.25

testing match # [Unit: WHEEL-SHAFT-SPLINE MODEL] in format 10
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.2

testing match # [Unit: DRIVE-ADAPTER-HUB-SPLINE MODEL] in format 10
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.5

testing match # [Unit: DRIVE-SHAFT-SPLINE MODEL] in format 10
against referent # [Unit: SHAFT-DRIVEN-AIR-CENTRIFUGAL-COMPRESSOR MODEL]
in format 1 score = 0.25

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format 5
against referent # [Unit: LUBE-OIL MODEL] in format 4
score = 1.0

27

WAUCHOPE, MARSH, AND DIBENIGNO

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format 5
against referent # [Unit: OIL-PRESSURE MODEL] in format 4
score = 1.0

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format 5
against match # [Unit: OIL-PUMP-SHAFT MODEL] in format 9
score = 0.7

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format 5
against match # [Unit: DRIVE-SHAFT MODEL] in format 9
score = 0.4

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format S
against match # [Unit: DRIVE-ADAPTER-HUB-SPLINE MODEL] in format 10
score = 0.30952382

testing match # [Unit: LUBE-OIL-PRESSURE-ALARM MODEL] in format 5
against match # [Unit: DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 0.33333334

testing match # [Unit: COMPRESSOR-FAIL-TO-ENGAGE-ALARM MODEL] in format 5
against match # [Unit: OIL-PUMP-SHAFT MODEL] in format 9
score = 0.34285715

testing match # [Unit: COMPRESSOR-FAIL-TO-ENGAGE-ALARM MODEL] in format 5
against match # [Unit: DRIVE-SHAFT MODEL] in format 9
score = 0.3

testing match # [Unit: COMPRESSOR-FAIL-TO-ENGAGE-ALARM MODEL] in format 5
against match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
score = 0.7

testing match # [Unit: COMPRESSOR-FAIL-TO-ENGAGE-ALARM MODEL] in format 5
against match # [Unit: DRIVE-ADAPTER-HUB-SPLINE MODEL] in format 10
score = 0.25

testing match # [Unit: COMPRESSOR-FAIL-TO-ENGAGE-ALARM MODEL] in format 5
against match # [Unit: DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 0.25757575

testing match # [Unit: OIL-PUMP-SHAFT MODEL] in format 9
against match # [Unit: DRIVE-ADAPTER-HUB-SPLINE MODEL] in format 10
score = 0.7

testing match # [Unit: OIL-PUMP-SHAFT MODEL] in format 9
against match # [Unit: DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 0.75

testing match # [Unit: DRIVE-SHAFT MODEL] in format 9
against match # [Unit: COUPLING-DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 0.7

28

NRL REPORT 9154

testing match # [Unit: DRIVE-SHAFT MODEL] in format 9
against match # [Unit: GEAR-SHAFT-SPLINE MODEL] in format 10
score = 0.75

testing match # [Unit: DRIVE-SHAFT MODEL] in format 9
against match # [Unit: WHEEL-SHAFT-SPLINE MODEL] in format 10
score = 0.5833333

testing match # [Unit: DRIVE-SHAFT MODEL] in format 9
against match # [Unit: DRIVE-ADAPTER-HUB-SPLINE MODEL] in format 10
score = 1.0

testing match # [Unit: DRIVE-SHAFT MODEL] in format 9
against match # [Unit: DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 1.5

testing match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
against match # [Unit: COUPLING-DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 1.5

testing match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
against match # [Unit: GEAR-SHAFT-SPLINE MODEL] in format 10
score = 1.0

testing match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
against match # [Unit: WHEEL-SHAFT-SPLINE MODEL] in format 10
score = 0.64285713

testing match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
against match # [Unit: DRIVE-ADAPTER-HUB-SPLINE MODEL] in format 10
score = 0.64285713

testing match # [Unit: COUPLING-DRIVE-SHAFT MODEL] in format 9
against match # [Unit: DRIVE-SHAFT-SPLINE MODEL] in format 10
score = 0.6666667

The matches that have the highest scores overall are now selected as the most likely referents
for each nominal. Also, any input/output or assembly/component connections that exist between the
named objects are noted explicitly, to aid in causal inferencing later.

Running rule HIGHEST-SCORE in world *BACKGROUND*
believe that the referent of (SPLINE) is DRIVE-SHAFT-SPLINE

Adding (THE REFERENT OF FORMATIO-PART IS DRIVE-SHAFT-SPLINE)
to *BACKGROUND*

Running rule HIGHEST-SCORE in world *BACKGROUND*
believe that the referent of (DRIVE SHAFT) is DRIVE-SHAFT

Adding (THE REFERENT OF FORMAT9-PART IS DRIVE-SHAFT) to *BACKGROUND*

Running rule SUPERCOMPONENT-PART in world *BACKGROUND*
Adding (A SUPERCOMPONENT-PART OF FORMATIO-PART IS FORMAT9-PART)
to *BACKGROUND*

29

WAUCHOPE, MARSH, AND DIBENIGNO

Running rule HIGHEST-SCORE in world *BACKGROUND*
believe that the referent of (ALARM) is LUBE-OIL-PRESSURE-ALARM

Adding (THE REFERENT OF FORMAT5-ALARM IS LUBE-OIL-PRESSURE-ALARM)
to *BACKGROUND*

Running rule INPUT-FROM-PART in world *BACKGROUND*
Adding (AN INPUT-FROM-PART OF FORMAT5-ALARM IS FORMATIO-PART)
to *BACKGROUND*

Running rule INPUT-FROM-PART in world *BACKGROUND*
Adding (AN INPUT-FROM-PART OF FORMAT5-ALARM IS FORMAT9-PART)
to *BACKGROUND*

Running rule INPUT-FROM-PART in world *BACKGROUND*
Adding (AN INPUT-FROM-PART OF FORMAT5-ALARM IS FORMAT1-PART)
to *BACKGROUND*

From the preceding we notice that the system has decided that alarn refers to the lube oil pres-
sure alaryn, and that drive shaft refers to the particular drive shaft that carries output from the SSDG
to the SAC (that shaft happens to be named "drive shaft" as well, but this is only one factor that the
system takes into account in its disambiguation). It can then decide that splines refers particularly to
the splines of this shaft.

The system now leaves the domain-specific (MODEL) knowledge base and enters the more
domain-general (TERSE-RULES) knowledge base. Rule catgz.damage asserts that the STATUS
worn is a DAMAGE word, and then asserts that the state of the PART splines is DAMAGED, since
the STATUS and PART occurred in the same format line. Rule damage.is.bad then asserts that
worn is an undesirable (BAD) state, and rule bad.part.malfunc asserts that pieces of equipment in an
undesirable state are not functioning properly. Rule catgz.failure now classifies the status drop as a
FAILURE word that in turn is also asserted to be an undesirable state.

Running rule CATGZ.DAMAGE in world *BACKGROUND*
Adding (A HEADCAT OF FORMATIO-STATUS IS DAMAGED) to *BACKGROUND*

Running rule DAMAGED.PART in world *BACKGROUND*
Adding (A STATE OF FORMATIO-PART IS DAMAGED) to *BACKGROUND*

Running rule DAMAGE.IS.BAD in world *BACKGROUND*
Adding (A HEADCAT OF FORMATIO-STATUS IS BAD) to *BACKGROUND*

Running rule BAD.PART.MALFUNC in world *BACKGROUND*
Adding (A STATE OF FORMATIO-PART IS MALFUNCTIONING) to *BACKGROUND*

Running rule CATGZ.FAILURE in world *BACKGROUND*
Adding (A HEADCAT OF FORMAT4-STATUS IS FAILURE) to *BACKGROUND*

Running rule FAILURE.IS.BAD in world *BACKGROUND*
Adding (A HEADCAT OF FORMAT4-STATUS IS BAD) to *BACKGROUND*

Now that it knows the referents for all pieces of equipment and the states of most of those
pieces of equipment, the system can perform model-based causal and state inferencing. First, it notes

30

NRL REPORT 9154

that freely was not classified as either BAD or normal, so it attempts to determine if the drive shaft
might be malfunctioning by seeing if either a component of or a functional input to the shaft is mal-
functioning. The drive shaft splines are malfunctioning because they are worn, so the system decides
that rotate freely is probably used to describe a malfunction. The system also asserts that the worn
splines were the cause of this malfunction. Since the oil pressure is known to be BAD and the drive
shaft is what provides power to the oil pump, the system then determines that the malfunctioning shaft
was the cause of the drop of pressure. Finally, the worn splines are asserted to be the root cause of
the drop of pressure, by rule causal-chain.

Running rule INFER-BAD-SUPERCOMPONENT in world *BACKGROUND*
Adding (A HEADCAT OF FORMAT9-STATUS IS FAILURE) to *BACKGROUND*
Adding (A HEADCAT OF FORMAT9-STATUS IS BAD) to *BACKGROUND*
Adding (A STATE OF FORMAT9-PART IS MALFUNCTIONING) to *BACKGROUND*

Running rule INDIRECT-CAUSE-BAD-PROPERTY in world *BACKGROUND*
inferring that DRIVE SHAFT ROTATE FREELY caused LUBE OIL PRESSURE DROP

Running rule CAUSE-BAD-SUPERCOMPONENT in world *BACKGROUND*
inferring that WEAR PAST EXTENSIVELY SPLINE caused DRIVE SHAFT
ROTATE FREELY

Running rule CAUSAL-CHAIN in world *BACKGROUND*
inferring that WEAR PAST EXTENSIVELY SPLINE caused LUBE OIL
PRESSURE DROP

The system finally returns to the domain-general knowledge base, and is ready to assign scores
to each salient concept (such as PART, CAUSE, FINDING, and BAD-STATUS) discovered in the
message.

Running rule MENTION.PART in world *BACKGROUND*
;;; Add 1 point to FORMATi for SAC

Running rule MENTION.PART in world *BACKGROUND*
;;; Add 1 point to FORMAT9 for DRIVE SHAFT

Running rule MENTION.PART in world *BACKGROUND*
;;; Add 1 point to FORMAT10 for SPLINES

Running rule CAUSE in world *BACKGROUND*
;;; Add 2 points to SPLINES WORN because it caused ROTATE FREELY

Running rule CAUSE in world *BACKGROUND*
;;; Add 2 points to ROTATE FREELY because it caused PRESSURE DROPPING

Running rule CAUSE in world *BACKGROUND*
;;; Add 2 points to SPLINES WORN because it caused PRESSURE DROPPING

Running rule FIND in world *BACKGROUND*
;;; Add 1 point to SHAFT ROTATE FREELY because it was a FINDING

Running rule BAD-STATUS in world *BACKGROUND*
;;; Add 10 points to FORMAT4 for DROP

31

WAUCHOPE, MARSH, AND DIBENIGNO

Running rule BAD-STATUS in world *BACKGROUND*
;;; Add 10 points to FORMAT9 for FREELY

Running rule BAD-STATUS in world *BACKGROUND*
;;; Add 10 points to FORMATIO for WORN

Now the display shows SPLINES EXTENSIVELY WORN as the highlighted clause, having accu-
mulated 15 points (it was the CAUSE of two events mentioned in the message, it mentions a PART,
and it mentions a BAD-STATUS). A close runner-up was DRIVE SHAFT ROTATE FREELY with 14
points (it only was the CAUSE of one event, but it was FOUND to be true, and also mentions a
PART). The following KEE queries show the final state of the system's working memory.

> (query '(a match of ?x is ?y))

;;; potential referents found in initial matching phase

((A MATCH OF FORMAT5-ALARM IS MATCH118)
(A MATCH OF FORMAT5-ALARM IS MATCH117)
(A MATCH OF FORMAT9-PART IS MATCH111)
(A MATCH OF FORMAT9-PART IS MATCH I10)
(A MATCH OF FORMAT9-PART IS MATCH109)
(A MATCH OF FORMATIO-PART IS MATCH116)
(A MATCH OF FORMAT10-PART IS MATCH115)
(A MATCH OF FORMATlO-PART IS MATCH114)
(A MATCH OF FORMATIO-PART IS MATCHI13)
(A MATCH OF FORMATlO-PART IS MATCH112))

> (query '(the object of ?x is ?y))

;;; the equipment object associated with each matching

((AN OBJECT OF MATCH109 IS COUPLING-DRIVE-SHAFT)
(AN OBJECT OF MATCH 1 10 IS DRIVE-SHAFT)
(AN OBJECT OF MATCH 111 IS OIL-PUMP-SHAFT)
(AN OBJECT OF MATCH 1 12 IS DRIVE-SHAFT-SPLINE)
(AN OBJECT OF MATCH 113 IS DRIVE-ADAPTER-HUB-SPLINE)
(AN OBJECT OF MATCH 1 14 IS WHEEL-SHAFT-SPLINE)
(AN OBJECT OF MATCH 115 IS GEAR-SHAFT-SPLINE)
(AN OBJECT OF MATCH 116 IS COUPLING-DRIVE-SHAFT-SPLINE)
(AN OBJECT OF MATCH117 IS COMPRESSOR-FAIL-TO-ENGAGE-ALARM)
(AN OBJECT OF MATCH 118 IS LUBE-OIL-PRESSURE-ALARM))

> (query '(the score of ?x is ?y))

;;; the score associated with each matching, and the winner (referent) for each

((THE SCORE OF MATCH 118 IS 5.1928573) ;;; LUBE-OIL-PRESSURE-ALARM
(THE SCORE OF MATCH 117 IS 2.3837664)

(THE SCORE OF MATCH 116 IS 2.55)
(THE SCORE OF MATCH115 IS 2.1)

32

NRL REPORT 9154

(THE SCORE OF MATCH 114 IS 1.5261905)
(THE SCORE OF MATCH113 IS 3.5023808)
(THE SCORE OF MATCH 112 IS 3.857576)

(THE SCORE OF MATCH111 IS 2.9373016)
(THE SCORE OF MATCH 110 IS 6.677778)
(THE SCORE OF MATCH109 IS 5.596825)

;;; DRIVE-SHAFT-SPLINE

;;; DRIVE-SHAFT

;;; the score earned by each information format

(A SCORE OF FORMATI IS 1)
(A SCORE OF CONN1 IS 0)
(A SCORE OF FORMAT2 IS 0)

(A SCORE OF FORMAT3 IS 0)
(A SCORE OF CONN4 IS 0)
(A SCORE OF FORMAT4 IS 10)
(A SCORE OF FORMAT5 IS 0)
(A SCORE OF FORMAT6 IS 0)

(A SCORE OF CONN8 IS 0)
(A SCORE OF FORMAT7 IS 0)
(A SCORE OF FORMAT8 IS 0)
(A SCORE OF CONNI IIS 0)
(A SCORE OF FORMAT9 IS 14)
(A SCORE OF FORMAT10 IS 15))

;;; SAC RECEIVED HIGH USAGE
;;; DURING
;;;TWO BECCE PERIODS

;;;CCS RECEIVED A REPORT
THAT
LO PRESSURE WAS DROPPING

;;; ALARM SOUNDED
LOUD NOISES WERE COMING FROM
THE DRIVE END
DURING

;;; COAST DOWN
SOMEONE

;;; FOUND
;;; DRIVE SHAFT ROTATE FREELY
;;;SPLINES EXTENSIVELY WORN

> (query '(the referent of ?x is ?y))

;;; the referent found for each PART/PROP/ALARM noun phrase

((THE REFERENT OF FORMAT4-PROP IS OIL-PRESSURE)
(THE REFERENT OF FORMAT1-PART IS SHAFT-DRIVEN-AIR
CENTRIFUGAL-COMPRESSOR)

(THE REFERENT OF FORMAT4-PART IS LUBE-OIL)
(THE REFERENT OF FORMAT9-PART IS DRIVE-SHAFT)
(THE REFERENT OF FORMAT10-PART IS DRIVE-SHAFT-SPLINE)
(THE REFERENT OF FORMAT5-ALARM IS LUBE-OIL-PRESSURE-ALARM))

IMPLEMENTATION

The SUMMARY system was implemented in OPS5, which provides forward-chaining produc-
tion rules, control clauses on the left-hand sides of rules (which can be used to segregate rules into
rule sets), and the ability to pattern match simple record-like structures. The first implementation of
the starting air compressor equipment model was in the object-oriented language Flavors [11], that is
integrated into the production rule system YAPS [12] that was being used for further development of
the text highlighting system. Flavors provides all the basic mechanisms for implementing a frame-
like representation, and so it was well suited to the initial development of a highly structured model.
The most recent implementation of the text highlighting system is in Intellicorp's KEE Knowledge
Engineering Environment. Although the YAPS environment provides both production rules and a
frame-like language (Flavors), the YAPS discrimination net (the pattern matcher for rule conditions)

33

WAUCHOPE, MARSH, AND DIBENIGNO

is not sensitive to changes to individual fields of Flavors objects, so the two representations are not
fully integrated for rule-based behavior. KEE rules are sensitive to changes in the fields of structured
objects (units), and have an English-like syntax that gives them good readability.

An example of a KEE production rule is shown in Fig. 12. Semantic pattern information is
implicitly represented in the left-hand sides of rules. For example, the subpattern PART STATUS
can occur in either a repair pattern (repaired worn assembly) or a part-state pattern (splines exten-
sively worn). Thus the example rule will search for all part-state predications in which the STATUS
is bad, and assert that the co-occurring PART is MALFUNCTIONING. The first three clauses of the
IF condition match the general semantic pattern, while the fourth clause is a test for a more specific
piece of information (HEADCAT) that was generated by some other piece of knowledge.

(BAD.PART.MALFUNC
(IF (TI-E PART OF ?FORMAT IS ?PART)

(THE STATUS OF ?FORMAT IS ?STATUS)
(CANT.FIND (TI-E REPAIR OF ?FORMAT IS ?REPAIR))
(A HEADCAT OF ?STATUS IS BAD)

THEN
(TIHE STATE OF ?PART IS MALFUNCTIONING)))

Fig. 12 - Rule bad.part.malfunc

KEE provides powerful frame-based mechanisms, a variety of rule-based control strategies, a
convenient user interface, and graphics capabilities. KEE also provides the ability to maintain several
knowledge bases at one time. This allowed us to give the system a more modular and manageable
organization. YAPS was available only in Franz Lisp, but KEE is based in Common Lisp. TERSE
runs on both a Symbolics and a Sun workstation. All the accompanying code for the system is writ-
ten in Common Lisp.

CONCLUDING REMARKS

We have not yet carried out empirical tests to determine to what extent the inclusion of the addi-
tional domain-specific knowledge improves the fit between the machine-generated and manual text
extracts. In some cases, the ability to infer additional causal information seems to be the factor that
brings the machine extract closer to the human extract. The sample run of the previous section shows
that the inclusion of domain-specific inferencing brought the score of the sentence drive shaft was
found to rotate freely at the SSDG end up to within one point of the previous winner splines were
extensively worn, thus giving us an extract virtually identical to the human-generated one. In other
cases, domain-specific expertise does not seem to have any bearing on the variance between the
human and machine extracts, therefore some other value judgments must be involved.

We presently judge TERSE's success by comparing its output to the output of the human per-
sonnel trained for the extraction task. This only allows us to measure success by the amount of over-
lap between the machine and manual extracts. Having these experts evaluate the system's output
would provide interesting and valuable feedback in determining how close TERSE's misses are, and
why the experts chose the alternatives they did.

Nominal Dereferencing Limitations

Although the techniques described in the section on Nominal Dereferencing allow most equip-
ment names to be successfully dereferenced, several unresolved problems still must be dealt with.

34

NRL REPORT 9154

Head Nouns

Certain generic head nouns such as assembly, module, and coupling are used liberally by mes-
sage writers to describe various parts or collections of parts but have proved problematic in dere-
ferencing against the model. Many pieces of equipment are named assembly in the equipment manu-
als, and their names generally fall into three categories based on the role of their left modifiers:
equipment class (oil pump assembly), functionality (high speed rotating assembly), and component
(impeller assembly). Those in the first group can be referred to simply by their model equipment
class (e.g. oil pump). Those in the remaining two groups are represented in the model as being of
class <assembly>, since that head noun is required to reference them. Message writers, however,
often use assembly to invent a name for an unspecified collection of parts that has no distinct identity
in the equipment manuals, such as spline assembly (a collection of things having splines) and pump
drive assembly (a collection of things that drive the pump). Such references can often be ambiguous:
shaft assembly may refer to a shaft or to some collection of related parts that includes a shaft. (Note
that a piece of equipment need not have components to be called an assembly in the equipment manu-
als, such as the <ring-gear-hub-assembly>.)

Our present method of dealing with this problem is to assume that shaft assembly refers only to
the shaft itself. This may not be precisely what the writer meant, but does return a pointer to a piece
of equipment prominently related to the reference. This is probably the best that can be hoped for,
since such nominals are confusing and ambiguous to human readers as well.

Left Modifiers

Several left modifier roles are problematic. Although we have developed ideas on how to han-
dle these, the system currently must ignore them.

Four distinct starting air compressor systems are aboard ship, but we have chosen to instantiate
only a single one and consider it a generic model for all four. Thus the matcher ignores the left
modifiers in expressions like nr 4 SAC. This decision was based on earlier test data, in which only
one system at a time was ever mentioned within a single message. In later data, however, we have
seen references to more than one system within a single message, so a mechanism for distinguishing
between the different systems is needed. This will probably not require the duplication of units in the
equipment model, but just the flagging of message PART entries with an integer ID.

The equipment model does not yet incorporate spatial relationships, and so the matcher currently
ignores locative left modifiers, as in end flange and front seal. Message writers tend to use locatives
to identify low-level components whose precise identity is not as crucial as that of higher level com-
ponents. The inclusion of spatial relationships in the model is helpful, however, for the interpretation
of locative prepositional phrases, therefore the inclusion of spatial relationships is being considered.

Currently the system cannot handle verbal modifiers that explicitly signal functional or connec-
tive relations to other pieces of equipment:

* mating engine mounted drive hub
* solenoid operated clutch valve
* driven gear

In all these cases, to ignore the verbal modifier causes no dereferencing problems because the implicit
functional/connective relations are still understood. Engine drive hub can be interpreted as a hub con-
nected to an engine, solenoid clutch valve can be interpreted as a valve containing a solenoid com-
ponent, and all gears can be considered to be driven by something. Still, the explicit verb provides a

35

WAUCHOPE, MARSH, AND DIBENIGNO

modifier role cue that could be used. An extension to the pattern-matching BNF can probably handle
these verbs by treating the verb as a predicate and any enclosing items as arguments [13].

Another problem in the matching of equipment names against the model arises from our
approach to information formatting. In extracting classes of information from the message, the for-
matting component frequently decomposes nominal expressions into several distinct format entries.
This is often desirable; it is convenient for impellor blade tip erosion and tip of impellor blade eroded
to be formatted as PART AREA STATUS, because this gives the model a distinct part name (impel-
lor blade) to match, and because it separates the predicative status word. When equipment names are
further decomposed, however, we get ambiguities and erroneous semantic patterns. For example,
Unit has low output air pressure and failure of SAC lube oil pressure transducer both decompose into
the pattern PART PROP STATUS that should be interpreted semantically as "the PROP of the PART
is in state STATUS." However, only the first sentence conforms to these semantics. Similarly, the
noun phrase low lube oil alarm set point is decomposed into the pattern STATUS PART ALARM
PROP. This makes it appear that something (either a PART, an ALARM, or a PROP) is being
predicated as having a STATUS, whereas the STATUS is being used to name something and not to
predicate it.

In our present approach, we do not allow partial matching. Once the left modifiers that the sys-
tem knows can ignore have been stripped off, each of the remaining words of the nominal must
correspond to an attribute of some model object for a match to be successful. Since we already use
uncertainty factors in the disambiguation of underspecified nominals, as described in the next section,
partial matching could easily be incorporated. However, the problem of deciding how close a partial
match must be to be considered acceptable is a difficult one. Partial matching could make the system
somewhat more robust, but it might also introduce nominal dereferencing errors, and so requires
further thought.

Text Representation Limitations

The initial distributional analysis of equipment failure messages determined that there were eight
semantic patterns in the sublanguage. Each pattern corresponds to a different primitive assertion type,
by which we mean a predication (either nominal or verbal) that contains no further embedded predi-
cate material. The six primitive assertion types relevant to air compressor messages were repair
(SAC was removed), part-state (power pack failed), investigation (inspection of lube oil filter),
general-administration (matting to be procured locally), assistance (assistance from Desron 8), and
ship-task (awaiting parts for nr 2 SAC).

We defined a new format structure as a general data structure that could encode any of these
primitive assertion types. The format structure has one slot for each semantic category in the sub-
language. Depending on which of the structure's slots are filled in, one can determine which seman-
tic pattern to use for interpreting the format. For example, Splines were sheared fills the PART and
STATUS slots of the structure, indicating th, part-state pattern; Replaced damaged hub fills the
PART, STATUS and REPAIR slots, indicating the repair pattern. To represent compound sen-
tences, a binary operator called a connective conjoins two formats. Multiple conjoinings are accom-
plished by allowing either or both of the arguments to the connective to be a conjoined structure as
well.

Many verbs in the sublanguage can take other predicates as arguments, such as cause, believe,
and reveal. Since format structures cannot contain embedded predicate material, we decided that
these verbs be represented as a special type of connective, because that was the only available struc-
ture that could have other predicates as arguments. For some verbs, such as cause and reveal, both

36

NRL REPORT 9154

arguments to the verb are often predicative in nature. For verbs like believe or find, however, only

the second argument can be sentential. Since the connective structure can only conjoin predicates, the

subject of believe must be represented as a fragmentary assertion, which is erroneous. The resulting

representation scheme is also inconsistent: although the high-order verbs are represented in a kind of

binary predicate-argument form, first-order verbs (those occurring in the primitive assertion types) are

not marked as predicates but simply co-occur with their arguments (also unmarked) as format ele-

ments.

Since the format structure only contains one slot for each semantic category, a primitive asser-

tion such as drive shaft sheared all internal gear teeth cannot be represented as a single format at all,

because two pieces of equipment are mentioned but only one PART slot is in the format. Hence the

verb sheared in this sentence has to be treated as a connective, with drive shaft and internal gear

teeth formatted as fragmentary assertions. When used either intransitively or passively, however

(e.g., the teeth sheared, the teeth were sheared), sheared is formatted as a STATUS entry and the
sentence is represented by a single information format.

For distributional co-occurrence patterns to work as a consistent text representation, there must

be a pattern corresponding to every type of assertion that can be made in the sublanguage, whether

primitive or higher order. There would have to be a reveal pattern, for example, of the form investi-

gation REVEAL part-state, in which the items co-occurring with the REVEAL verb are subpatterns.
To accommodate shaft sheared all gear teeth, there would have to be a pattern CAUSATIVE-PART

DAMAGE AFFECTED-PART. The sentence gear teeth sheared (whether interpreted in the active or
passive sense) would map to the same pattern, with gear teeth filling the AFFECTED-PART slot in

either case, and the CAUSATIVE-PART slot left empty. As a result, sheared would always be for-

matted into the same semantic class and role no matter how it had occurred syntactically.

Because of the syntactic and semantic complexity of the domain, however, it is not altogether

certain that the subject of the verb shear will always be a PART entry. One can readily imagine the

sentence Continued rotation of drive shaft sheared all teeth from hub, where the subject of shear is
the nominalized predicate continued rotation of drive shaft. This would require that we generalize the

"CAUSATIVE-PART" slot above to be simply CAUSATIVE, and that we place a type constraint on

shear requiring that the item filling the CAUSATIVE slot be either of the semantic class PART, or of

another predicate form. In turn, the possibility of the sentence Debris sheared all teeth from hub sug-
gests that we create a new semantic category PHYSICAL-THING of which PART and MATERIAL

(debris) are both subclasses, and loosen the PART class constraint to be PHYSICAL-THING.

These modifications are clearly taking us in the direction of case-frame representation [14], in

which co-occurrence patterns are replaced by predicate classes. The slots of these predicates

represent true roles, not just semantic classes; the semantic classes (reorganized into a hierarchy)
serve as type constraints on the values each slot can hold. The investigation pattern ORG PART

STATUS INVEST, for example, would be replaced by the predicate class investigate, which takes

two arguments, an "agent" and an "object." The agent must be of semantic class ORG, and the

object must be either of semantic class PART (S/F inspected SAC) or a nominalized predicate (S/F

investigated failure of SAC). Note that this representation explicitly provides a certain amount of

abstract role information (i.e., predicate, agent, object), represents all predicating elements con-
sistently, and associates each entity with the predicate of which it is an argument. The co-occurrence
pattern ORG PART STATUS INVEST does not indicate that the STATUS is a predicate on the

PART, but simply that it is an optional co-occurring element. In the predicate-class representation of

S/F investigated failure of SAC, however, failure of SAC is encoded as a separate (nominalized) predi-

cate in its own right. The new parser that we have recently begun to use for syntactic analysis (see

the next section) has predicate-argument structures as its default sentence normalization scheme, so

moving to this new representation should be straightforward.

37

WAUCHOPE, MARSH, AND DIBENIGNO

RECOMMENDATIONS

Transitioning to Fleet

The components of the present system are (1) the natural language parser LSP (written in For-
tran) that runs only in batch mode, and (2) the TERSE software that runs in the interactive KEE
software environment. To process a message from an input text file, first we run the LSP parser and
formatting component on a VAX 11/750 machine. The information format output is written to text
files. TERSE is then run separately on either a Symbolics or Sun workstation, and it reads these files
as its input. The complete system is not fully integrated at this moment.

We are currently transitioning to the PROTEUS parser for our natural language analysis work.
PROTEUS is written in Common Lisp, which allows it to run easily in the same machine environ-
ment as the TERSE system. PROTEUS has several other advantanges over the LSP parser. It uses a
faster and more efficient parsing algorithm, and it has a declarative normalization component that
seems to be easier to program than LSP's procedural, tree-manipulating normalization routines. Also,
PROTEUS encourages the use of a more consistent text normalization scheme than information for-
mats, as discussed in the previous section. We recommend that the additional work necessary to
bring PROTEUS into full use be done, so that it can serve as the natural language analysis software
for TERSE. This work will be done in three phases. First, many grammatical restrictions in the LSP
grammar must be rewritten to accommodate the PROTEUS tree construction methodology. Second, a
selectional component (semantic constraints for selecting from multiple syntactic analyses) must be
built. Finally, the TERSE system rulebases must be modified somewhat to accept predicate-argument
forms instead of information formats as input.

Although the inferencing rules used in the equipment model were designed to apply to any other
mechanical domain, the model itself (that portion of the knowledge base containing the component
definitions) must be updated for each new CASREP equipment domain to be processed. Even as
small a piece of equipment as the Starting Air Compressor required the modeling of over 80 com-
ponents, having hundreds of interconnections and attributes, to enable nominal dereferencing and
causal inferencing. As was discussed in the introduction to the section "THE EQUIPMENT
MODEL," common-sense knowledge about equipment in general does not seem to provide enough
expertise to perform any useful inferencing about equipment failure messages. Rather, detailed
knowledge about the structure and configuration of the particular piece of equipment seems to be
necessary. The task of constructing a domain model for the thousands of pieces of equipment on a
Navy ship would be extensive and costly. Further progress must be made to solve the knowledge
acquisition bottleneck problem to make this feasible.

Moving to New Message Domains

In general, what the TERSE rule system does is search a message for sentences of the form We
found that X, Investigation revealed that X, X caused Y, We suspect that X, The problem is X, and
(Part) X is (in state) Y, and attach arbitrary scores to each. We have not yet abstracted why these
particular "sentence templates" should signal important information, or what the basis of their impor-
tance relative to each other is. For example, the goal of ship personnel is that all equipment work
properly, and equipment failure violates or challenges that goal. To correct the goal's violation, the
equipment must be repaired or replaced. This requires that investigations be made to determine
which equipment has failed and what caused it. By abstracting a "script" representing the hierarchy
of human goals and subgoals, we are able not only to provide psychological justification for these
rules, but recast them in a form that could be applied to other message domains. At present, the sys-
tem requires that the sublanguage style of the new message domain use the same types of explicit

38

NRL REPORT 9154

phrasal markers. In a new domain, such as tactical messages, the same types of information might
occur - symptoms of a possible problem are detected (receiving intelligence reports), investigations
are made (dropping sonobuoys) that reveal the exact nature of the problem (enemy platforms are
detected), and actions are taken to correct the bad conditions (firing across the enemy's bow) - but
without any of the CASREP-sublanguage phrasal markers listed above being used. With a more
abstract goal/subgoal script, it might be possible to infer the contribution of each message sentence to
the goal hierarchy, in effect finding the abstract "story" behind the message.

Reevaluating the Task

In the prior discussion we assumed that a Text Reduction System such as TERSE provides a
facility useful to the Navy. In this section we examine the topic of Navy message processing in more
detail and propose some alternative approaches.

The Navy is faced with several problems in using messages such as CASREPs. One is the
sheer volume of messages coming in on a daily basis; another is the need to sort out the time-critical
from the non-time-critical information. Some of these tasks can be handled by using simple human or
computerized approaches, especially when the important data are contained in the formatted portions
of the reports. However, some of the important information is contained in sections of the message
that are written in free text. This information is much more difficult to process by machine than the
information contained in the formatted sections.

The approach currently taken by NAVSEA is for contracted personnel to read the narrative por-
tions of the messages and to extract up to 60 characters of the most important information from the
paragraph. Their goal is to reduce the text to a manageable size while still retaining information
important to perform failure trend analysis. After this reduction is made, the extracts can be entered
as raw texts into a computer database, or collected into a report. This information is then used by
other personnel to do failure trend analysis. The goal of the TERSE system was to accomplish the
same task as the NAVSEA personnel, that is, the generation of short extracts containing equipment,
state, and causal information suitable for failure trend analysis.

We feel that there were restrictions that caused NAVSEA to approach the problem in the
manner they did, and that these restrictions no longer apply to our automated message processing
approach. NAVSEA's approach was to extract a 60 character text from the narrative, and discard the
remainder. When this operation was implemented, computer technology was only in its second gen-
eration. This generation was characterized by limited and expensive primary storage (main memory)
and limited, expensive, and slow secondary storage, compared to what is available today. Database
retrieval systems were inefficient at handling the variable-length records that would be required to
hold the paragraph information in these reports. Even if the text could have been formatted into these
databases, no means existed for retrieving the contents, because these fields could not be "keyed"
like traditional fields in a database record. The system would have had to resort to exhaustive
character-by-character examinations of all text records contained in the database just to retrieve a
record containing a particular word. All in all, technology in both software and hardware made it
prohibitive to do anything useful on the computer with this portion of the messages. It seems that
NAVSEA's answer to this problem was to reduce the text to a more manageable and predictable size.
However, the problems of accessing the reduced natural language text in these traditional database
systems still remained, and we doubt that any automated procedure uses these fields at all.

The alternative to this approach is the kind of natural language technology we are now explor-
ing, which drastically changes what is possible in automated message processing. Rather than dupli-
cate a process that had its origins in an earlier computer technology, with its inability to process

39

WAUCHOPE, MARSH, AND DIBENIGNO

natural language inputs, it now seems more worthwhile to attempt to automate some of the actual
end-user information processing tasks, such as failure trend analysis and ship readiness assessment.
Rather than take a text, discard some of its information, and enter the remainder of the information
(still in text form) into a database to be used for failure trend analysis by human personnel, we
recommend that all the message information be retained in machine-accessible form (such as the
information format database records employed by TERSE). Several automated end-user applications
(including failure trend analysis) can then make use of this database, without the unnecessary inter-
mediate stage of text reduction. Although text reduction is a useful application, it must be given an
appropriate target domain. The text in the CASREP reports tends to be highly condensed and tele-
graphic, thus suggesting that the writers have already attempted to be as concise as possible and
include only important information.

ACKNOWLEDGMENTS

The Office of Naval Technology under A.I. Project RS34C74 and the Office of Naval Research
under Natural Language Research project RRO15-08-01 supported this research. We also thank
Dennis Perzanowski for his work in parsing the message narratives and for reviewing this report.

REFERENCES

1. E. Marsh, H. Hamburger, and R. Grishman, "A Production Rule System for Message Summar-
ization," Proc. of the AAAI, Austin, TX, Aug. 6-10, 1984, pp. 243-246.

2. E. Marsh, J. Froscher, R. Grishman, H. Hamburger, and J. Bachenko, "Automatic Processing
of Navy Message Narrative," NRL Report 8893, Aug. 1985.

3. C.L. Forgy, "OPS5 User's Manual," Technical Report CMU-CS-81-135, Department of Com-
puter Science, Carnegie-Mellon University, July 1981.

4. N. Sager, Natural Language Information Processing: A Computer Grammar of English and its
Applications (Addison-Wesley, Reading, MA, 1981).

5. E. Marsh, "Transporting the Linguistic String Project System from a Medical to a Navy
Domain," ACM Trans. Office Inf. Syst. 3(2), 1985.

6. Z.S. Harris, "Distributional Structure," Word 10(2-3) (1954).

7. E. Marsh, "A Computational Analysis of Complex Noun Phrases in Navy Messages," COL-
ING 84, July 2-6, 1984, pp. 505-508.

8. R. Grishman, "PROTEUS Parser Reference Manual," PROTEUS Project Memorandum #4,
Department of Computer Science, Courant Institute of Mathematical Sciences, New York
University, July 1986.

9. D.A. Dahl, "Focusing and Reference Resolution in PUNDIT," Proc. AAAI, Philadelphia, PA,
Aug. 11-15, 1986, pp. 1083-1088.

10. G. Hirst, Semantic Interpretation and the Resolution of Ambiguity (Cambridge University Press,
Great Britain, 1987).

11. E.M. Allen, R.H. Trigg, and R.J. Wood, "The Maryland Artificial Intelligence Group Franz
Lisp Environment," Technical Report TR-1226, Department of Computer Science, University
of Maryland, Dec. 1984.

40

NRL REPORT 9154

12. E.M. Allen, "YAPS: Yet Another Production System," Technical Report TR-1146, Department
of Computer Science, University of Maryland, Feb. 1982.

13. T. Ksiezyk, R. Grishman, and J. Sterling, "An Equipment Model and its Role in the Interpreta-
tion of Noun Phrases", Proc. Tenth Int. Joint Conf. on Artificial Intelligence, Milano, Italy,
1987.

14. C.J. Fillmore, "The Case for Case," in Universals in Linguistic Theory, E. Bach and R.T.
Harms, eds. (Holt Rinehart and Winston, New York, 1968), pp. 1-88.

41

